Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender.
This paper provides a focused and organized review of the research progress on neurophysiological indicators, also called "neurometrics," to show how they can effectively address some of the most important human factors (HFs) needs in the air traffic management (ATM) field. In order to better understand and highlight available opportunities of such neuroscientific applications, state of the art on the most involved HFs and related cognitive processes (e.g., mental workload and cognitive training) are presented together with examples of possible applications in current and future ATM scenarios. Furthermore, this paper will discuss the potential enhancements that further research and development activities could bring to the efficiency and safety of the ATM service.
Generally, the training evaluation methods consist in experts supervision and qualitative check of the operator's skills improvement by asking them to perform specific tasks and by verifying the final performance. The aim of this work is to find out if it is possible to obtain quantitative information about the degree of the learning process throughout the training period by analyzing neuro-physiological signals, such as the electroencephalogram, the electrocardiogram and the electrooculogram. In fact, it is well known that such signals correlate with a variety of cognitive processes, e.g. attention, information processing, and working memory. A group of 10 subjects have been asked to train daily with the NASA multi-attribute-task-battery. During such training period the neuro-physiological, behavioral and subjective data have been collected. In particular, the neuro-physiological signals have been recorded on the first (T1), on the third (T3) and on the last training day (T5), while the behavioral and subjective data have been collected every day. Finally, all these data have been compared for a complete overview of the learning process and its relations with the neuro-physiological parameters. It has been shown how the integration of brain activity, in the theta and alpha frequency bands, with the autonomic parameters of heart rate and eyeblink rate could be used as metric for the evaluation of the learning progress, as well as the final training level reached by the subjects, in terms of request of cognitive resources.
Machine-learning approaches for mental workload (MW) estimation by using the user brain activity went through a rapid expansion in the last decades. In fact, these techniques allow now to measure the MW with a high time resolution (e.g. few seconds). Despite such advancements, one of the outstanding problems of these techniques regards their ability to maintain a high reliability over time (e.g. high accuracy of classification even across consecutive days) without performing any recalibration procedure. Such characteristic will be highly desirable in real world applications, in which human operators could use such approach without undergo a daily training of the device. In this work, we reported that if a simple classifier is calibrated by using a low number of brain spectral features, between those ones strictly related to the MW (i.e. Frontal and Occipital Theta and Parietal Alpha rhythms), those features will make the classifier performance stable over time. In other words, the discrimination accuracy achieved by the classifier will not degrade significantly across different days (i.e. until one week). The methodology has been tested on twelve Air Traffic Controls (ATCOs) trainees while performing different Air Traffic Management (ATM) scenarios under three different difficulty levels.
Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.