Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics and many other research fields. According to this theory, identical systems under identical conditions may reach different states. This effect is known as replica symmetry breaking and is revealed by the shape of the probability distribution function of an order parameter named the Parisi overlap. However, a direct experimental evidence in any field of research is still missing. Here we investigate pulse-to-pulse fluctuations in random lasers, we introduce and measure the analogue of the Parisi overlap in independent experimental realizations of the same disordered sample, and we find that the distribution function yields evidence of a transition to a glassy light phase compatible with a replica symmetry breaking.
Wettability control has been widely investigated in the last decades for technological applications such as microfluidic devices and self-cleaning surfaces by modifying both the chemical composition and the geometric structure of the surfaces. Inspired by the typical morphology of superhydrophobic leaves (such as lotus leaves), we have developed a dual-scale roughness, micro- and nanosized, on polydimethylsiloxane (PDMS) surfaces. By combining different geometric parameters and plasma treatment conditions, the structures were controlled hierarchically, at different independent length scales. Both the microsized replicated pillars and the nanosized etched posts tuned the wettability of the PDMS surfaces in a very simple way, up to contact angles of 170 degrees . Furthermore, changes in the influence of micro- and nanoscale geometrical structures were investigated. Hysteresis and contact angles of water droplets are evaluated as a combined effect of micropillars and a superimposed roughness, resulting in high advancing contact angles and low sliding angles.
In our search for thiophene fluorophores that can overcome the limits of currently available organic dyes in live-cell staining, we synthesized biocompatible dithienothiophene-S,S-dioxide derivatives (DTTOs) that were spontaneously taken up by live mouse embryonic fibroblasts and HeLa cells. Upon treatment with DTTOs, the cells secreted nanostructured fluorescent fibrils, while cell viability remained unaltered. Comparison with the behavior of other cell-permeant, newly synthesized thiophene fluorophores showed that the formation of fluorescent fibrils was peculiar to DTTO dyes. Laser scanning confocal microscopy of the fluorescent fibrils showed that most of them were characterized by helical supramolecular organization. Electrophoretic analysis and theoretical calculations suggested that the DTTOs were selectively recognized by the HyPro component of procollagen polypeptide chains and incorporated through the formation of multiple H-bondings.
Superhydrophobic surfaces are gaining considerable interest in a lot of different applications, and nonetheless, precise control over the wettability properties of such surfaces is still a challenge due to difficulties when controlling the effects independently induced on superhydrophobicity by the chemical and topological surface characteristics. We have fabricated engineered superhydrophobic surfaces onto poly(dimethylsiloxane) (PDMS) substrates by means of suitable CF4-plasma treatments. These treatments allowed the modification of both the morphological properties of the PDMS surface, due to a preferential etching of certain components of its macromolecules, and the chemical ones, by the deposition of a fluorinated layer. Chemical effects were separated from topological ones by performing a double replica molding process of the CF4-plasma-treated surfaces. This allowed us to obtain positive copies of the structured surfaces without the overlaying fluorinated coating affecting the surface chemistry. Such replicated surfaces showed a decrease of the contact angle if compared to the treated ones and therefore evidenced chemistry's weight in superhydrophobicity effects. In particular, we found that, for highly dense columnar-like PDMS microstructures, the effect of the plasma-deposited fluorinated layer covering surfaces produces an enhancement of the contact angle of about 20 degrees .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.