COVID-19 presentation is very heterogeneous across cases, and host factors are at the forefront for the variables affecting the disease manifestation. The immune system has emerged as a key determinant in shaping the outcome of SARS-CoV-2 infection. It is mainly the deleterious unconstrained immune response, rather than the virus itself, which leads to severe cases of COVID-19 and the associated mortality. Genetic susceptibility to dysregulated immune response is highly likely to be among the host factors for adverse disease outcome. Given that such genetic susceptibility has also been observed in autoimmune diseases (ADs), a number of critical questions remain unanswered; whether individuals with ADs have a significantly different risk for COVID-19–related complications compared to the general population, and whether studies on the genetics of ADs can shed some light on the host factors in COVID-19. In this perspective, we discuss the host genetic factors, which have been under investigation in association with COVID-19 severity. We touch upon the intricate link between autoimmunity and COVID-19 pathophysiology. We put forth a number of autoimmune susceptibility genes, which have the potential to be additional host genetic factors for modifying the severity of COVID-19 presentation. In summary, host genetics at the intersection of ADs and COVID-19 may serve as a source for understanding the heterogeneity of COVID-19 severity, and hence, potentially holds a key in achieving effective strategies in risk group identification, as well as effective treatments.
Transforming growth factor beta (TGF-β) secretion from cells in the bone marrow (BM) niche affects hematopoietic stem cell (HSC) fate and has a cardinal role in HSC quiescence. BM mesenchymal stem cells (BM-MSCs), a component of the BM niche, may produce abnormal levels of TGF-β in Fanconi anemia (FA) and may play a role in bone marrow failure. Here, we molecularly and cellularly characterized FA BM-MSCs by addressing their immunophenotype, proliferation- and differentiation- capacity, reactive oxygen species (ROS) production, senescence activity as well as expression and secretion levels of TGF-β isoforms. In ten FA patients, mutations were detected in FANCA (n = 7), FANCG (n = 1) and FANCD2 (n = 2) genes. The immunophenotype, with the exception of CD29, and differentiation capacity of FA BM-MSCs were similar to healthy donors. FA BM-MSCs showed decreased proliferation, increased ROS level and an arrest in G2 following DEB treatment. β-galactosidase staining indicated elevated senescence of FANCD2-deficient cells. FA BM-MSCs displayed TGF-β1 mRNA levels similar to donor BM-MSCs, and was not affected by DEB treatment. However, secretion of TGF-β was absent in FA-D2 BM-MSCs. Absence of TGF-β secretion may be related to early onset of senescence of the FANCD2-deficient BM-MSCs. The proliferative response of FA-D2 BM-MSCs to rTGF-β1 was not different from FANCA-deficient and donor cells and raises the possibility that rTGF-β1 may reverse the senescence of the FANCD2-deficient BM-MSCs which needs to be investigated further.
IntroductionMesenchymal stromal cells (MSCs) are multipotent cells that can differentiate to adipogenic, osteogenic, and chondrogenic lineages (Pittenger et al., 1999). MSCs play critical roles in coordinating tissue regeneration through their versatile differentiation capacity and immunomodulatory effects. Human MSCs can readily be isolated from different body sites (i.e. bone marrow, adipose tissue) and easily be cultured in vitro (Pittenger et al., 1999; Zuket al., 2002), making them an attractive cell source for biomedical research. Identifying the lineage commitment potential of MSCs is necessary to establish a deeper understanding of their therapeutic potential. Depending on culture conditions and their tissue of origin, MSCs have variable potency and molecular properties, including a global gene expression profile (Lee et al., 2004;Picchi et al., 2013;Wang et al., 2016).Because of its validity and sensitivity, quantitative polymerase chain reaction (qPCR) has been a technique of choice in assessing gene expression of MSCs derived from distinct body sites (Picchi et al., 2013;Wang et al., 2016). The reliability of qPCR results (i.e. target gene expression) can only be judged when optimum conditions are used. Using an accurate reference gene (RG) with a stable expression level is compulsory for normalizing target gene expression. Mostly genes that function in cellular integrity (e.g., beta-actin. ACTB) or metabolism (e.g., glyceraldehyde 3-phosphate dehydrogenase, GAPDH) are used as RGs. However, these frequently used genes have been reported to have variable expression levels under different experimental procedures that make them unsuitable to be used for normalization. Several studies showed that ACTB and GAPDH are improper RGs in MSC expansion and differentiation (
BackgroundGonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed.MethodsGnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting.ResultsGnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation.ConclusionsBreast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.