Mesoscale Convective Complex (MCC) pertama kali diperkenalkan oleh Maddox pada tahun 1980. MCC merupakan salah satu jenis Mesoscale Convective System (MCS) yang memiliki ukuran lebih dari 100.000 km2 dan waktu hidup lebih dari 6 jam yang dapat menghasilkan cuaca buruk dan curah hujan yang berkelanjutan. Pada tanggal 9 Mei 2018, sebuah MCC tumbuh di wilayah Papua bagian selatan. Penelitian ini bertujuan untuk mengetahui karakteristik pertumbuhan MCC, kondisi atmosfer, dan distribusi curah hujan di sekitar wilayah Papua bagian selatan. Hasil citra satelit kanal infrared (IR) menunjukkan bahwa MCC yang ada tumbuh hingga mencapai luasan > 300.000 km2 dengan waktu hidup selama 14 jam. Distribusi curah hujan citra Global Satellite Mapping (GSMaP) menunjukkan adanya daerah hujan sepanjang 800 km dengan intensitas curah hujan yang beragam hingga mencapai 40 mm/jam. Analisis kondisi atmosfer juga dilakukan terhadap parameter angin, kelembapan relatif, divergensi, dan vertical velocity dari data model European Centre for Medium-Range Weather Forecasts (ECMWF). Berdasarkan hasil analisis secara deskriptif, konvergensi terjadi di wilayah Papua bagian selatan pada troposfer bagian bawah pada saat fase pertumbuhan MCC yang disertai dengan kondisi kelembapan udara yang tinggi di lapisan 850 hPa. Deret waktu nilai vertical velocity juga menggambarkan adanya proses pertumbuhan dan peluruhan MCC di wilayah Papua bagian selatan pada 9-10 Mei 2018.
Convective cloud monitoring since its growth stage primarily related to location and time of the first convective cloud initiated, called convective initiation (CI), could be the primary key in providing an earlier heavy rainfall event prediction. This study aimed to assess the accuracy and lead time of CI nowcasting using Satellite Convection Analysis and Tracking (SATCAST) algorithm in predicting the CI event within 0-60 minutes over Surabaya and surrounding area using Himawari-8 satellite during June-July-August (JJA) period in 2018. Three main processes used in this study were cloud masking, cloud object tracking, and CI nowcasting. Twelve interest fields were utilized as predictors based on six bands of Himawari-8 satellite, which represented cloud physics attributes such as cloud-top height, glaciation, or cooling rate. The verification was conducted by comparing CI prediction to CI location and time based on Surabaya weather radar within the next 0-60 minutes. The algorithm resulted that the prediction could achieve 87.3% of accuracy from the 3449 cloud objects. The prediction had POD, FAR, and CSI scores of 57.1%, 52.2%, and 35.2%, respectively. The 32.3 minutes of averaged lead time prediction indicated that CI nowcasting could detect growing cumulus about 30 minutes prior to the CI event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.