Background Dengue is one of the most rapidly spreading vector-borne diseases, which is considered to be a major health concern in tropical and sub-tropical countries. It is strongly believed that the spread and abundance of vectors are related to climate. Construction of climate-based mathematical model that integrates meteorological factors into disease infection model becomes compelling challenge since the climate is positively associated with both incidence and vector existence. Methods A host-vector model is constructed to simulate the dynamic of transmission. The infection rate parameter is replaced with the time-dependent coefficient obtained by optimization to approximate the daily dengue data. Further, the optimized infection rate is denoted as a function of climate variables using the Autoregressive Distributed Lag (ARDL) model. Results The infection parameter can be extended when updated daily climates are known, and it can be useful to forecast dengue incidence. This approach provides proper prediction, even when tested in increasing or decreasing prediction windows. In addition, associations between climate and dengue are presented as a reversed slide-shaped curve for dengue-humidity and a reversed U-shaped curves for dengue-temperature and dengue-precipitation. The range of optimal temperature for infection is 24.3–30.5 °C. Humidity and precipitation are positively associated with dengue upper the threshold 70 % at lag 38 days and below 50 mm at lag 50 days, respectively. Conclusion Identification of association between climate and dengue is potentially useful to counter the high risk of dengue and strengthen the public health system and reduce the increase of the dengue burden.
Dengue is a potentially lethal mosquito-borne disease, regarded as the most dangerous disease in the world. It is also a major health issue in tropical and subtropical countries. Environmental characteristics and sociocultural are factors which play a role in the spread of dengue. Different landscape structure such as lowland and highland areas are possible to give different infection rate on dengue transmission. Semarang and Malang are densely populated areas in Java, which are selected to be our study areas. A mathematical model (SIR-UV) is adapted to describe dengue transmission. Spiral dynamic optimization is applied to convert monthly data to weekly in Malang and estimate the infection rate that minimized the deviation between dengue data and simulation. This method produces a good fitting to the data. We compare the pattern of dengue cases from the simulation in both cities. Furthermore, we identify seasonal variations of the cases via Fourier series of the infection rate. We also investigate the correlation between humidity, infection rate, and dengue cases in Semarang and Malang. It reveals that humidity influences infection rate in 1-3 weeks later and the infection rate produces dengue cases in the next four weeks.
COVID-19 has currently become a global pandemic and caused a high number of infected people and deaths. To restrain the coronavirus spread, many countries have implemented restrictions on people’s movement and outdoor activities. The enforcement of health emergencies such as quarantine has a positive impact on reducing the COVID-19 infection risk, but it also has unwanted influences on health, social, and economic sectors. Here, we developed a compartmental mathematical model for COVID-19 transmission dynamic accommodating quarantine process and including tuberculosis and diabetic people compartments. We highlighted the potential negative impact induced by quarantine implementation on the increasing number of people with tuberculosis and diabetes. The actual COVID-19 data recorded in Indonesia during the Delta and Omicron variant attacks were well-approximated by the model’s output. A positive relationship was indicated by a high value of Pearson correlation coefficient, r=0.9344 for Delta and r=0.8961 for Omicron with a significance level of p<0.05. By varying the value of the quarantine parameter, this study obtained that quarantine effectively reduces the number of COVID-19 but induces an increasing number of tuberculosis and diabetic people. In order to minimize these negative impacts, increasing public awareness about the dangers of TB transmission and implementing a healthy lifestyle were considered the most effective strategies based on the simulation. The insights and results presented in this study are potentially useful for relevant authorities to increase public awareness of the potential risk of TB transmission and to promote a healthy lifestyle during the implementation of quarantine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.