Highlights d IL-33 is expressed by subsets of hippocampal neurons and is modulated by experience d Microglia drive dendritic spine plasticity and memory precision via neuronal IL-33 d IL-33 gain of function mitigates some age-related decreases in spine plasticity d Neuronal IL-33 induces microglial remodeling of the extracellular matrix
The ventral hippocampus (vHPC) is a critical hub in networks that process emotional information. While recent studies have indicated that ventral CA1 (vCA1) projection neurons are functionally dissociable, the basic principles of how the inputs and outputs of vCA1 are organized remain unclear. Here we used viral and sequencing approaches to define the logic of the extended vCA1 circuit. Using high-throughput sequencing of genetically barcoded neurons (MAPseq) to map the axonal projections of thousands of vCA1 neurons, we identify a population of neurons that simultaneously broadcast information to multiple areas known to regulate the stress axis and approach/avoidance behavior. Through molecular profiling and viral input-output tracing of vCA1 projection neurons, we show how neurons with distinct projection targets may differ in their inputs and transcriptional signatures. These studies reveal novel organizational principles of the vHPC that may underlie its functional heterogeneity.
Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain. We found that ramified microglia increased in synaptic regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synaptic-region associated microglia (SAMs) that were highly enriched in the hindbrain and expressed multiple candidate synapse modulating genes, including genes in the complement pathway. In contrast, neurogenic associated microglia (NAMs) were enriched in the optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish the zebrafish hindbrain as a model for investigating microglial-synapse interactions.
Astrocytes fulfil many functions in the central nervous system (CNS), including contribution to the blood brain barrier, synapse formation, and trophic support. In addition, they can mount an inflammatory response and are heterogeneous in morphology and function. To extensively characterize astrocyte subtypes, we FACS‐isolated and gene expression profiled distinct astrocyte subtypes from three central nervous system regions; forebrain, hindbrain and spinal cord. Astrocyte subpopulations were separated based on GLAST/SLC1A3 and ACSA‐2/ATP1B2 cell surface expression. The local brain environment proved key in establishing different transcriptional programs in astrocyte subtypes. Transcriptional differences between subtypes were also apparent in experimental autoimmune encephalomyelitis (EAE) mice, where these astrocyte subtypes showed distinct responses. While gene expression signatures associated with blood–brain barrier maintenance were lost, signatures involved in neuroinflammation and neurotoxicity were increased in spinal cord astrocytes, especially during acute disease stages. In chronic stages of EAE, this reactive astrocyte signature was slightly decreased, while obtaining a more proliferative profile, which might be relevant for glia scar formation and tissue regeneration. Morphological heterogeneity of astrocytes previously indicated the presence of astrocyte subtypes, and here we show diversity based on transcriptome variation associated with brain regions and differential responsiveness to a neuroinflammatory insult (EAE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.