Adaptive cruise control (ACC) systems are increasingly offered in new vehicles in the market today, and they form a core building block for future full autonomous driving. ACC systems allow vehicles to maintain a desired headway to a leading vehicle automatically. Recent research demonstrates that (1) shorter headways lead to higher throughput, and (2) the effective use of ACC can improve traffic flow by adapting the desired time headway in response to changing traffic conditions. In this paper we show that, although shorter headways result in higher capacity, flow breakdown still occurs if traffic densities at bottlenecks are allowed to exceed the critical density. Therefore, dynamic traffic control near bottlenecks is still necessary to avoid bottleneck activation and capacity loss. We propose an adaptive reinforcement learning (RL) headway controller that uses ACC headways to optimize traffic flow and minimize delay. Based on state measurements, the controller dynamically assigns an optimal headway value for each freeway section within a control cycle. In a freeway simulation example, we first demonstrate that different nondynamic headway assignment strategies failed to avoid congestion and traffic breakdown. We then present a dynamic headway control strategy based on deep reinforcement learning (DRL) that adapts the desired headway according to the changing traffic conditions on both the freeway and the ramp to effectively maximize traffic flow and minimize system delay. We quantitatively demonstrate that our DRL dynamic headway control strategy improved traffic and reduced system delay by up to 57% compared with the examined nondynamic headways.
Over the last decade, there has been rising interest in automated driving systems and adaptive cruise control (ACC). Controllers based on reinforcement learning (RL) are particularly promising for autonomous driving, being able to optimize a combination of criteria such as efficiency, stability, and comfort. However, RL-based controllers typically offer no safety guarantees. In this paper, we propose SECRM (the Safe, Efficient, and Comfortable RL-based car-following Model) for autonomous car-following that balances traffic efficiency maximization and jerk minimization, subject to a hard analytic safety constraint on acceleration. The acceleration constraint is derived from the criterion that the follower vehicle must have sufficient headway to be able to avoid a crash if the leader vehicle brakes suddenly. We critique safety criteria based on the time-to-collision (TTC) threshold (commonly used for RL controllers), and confirm in simulator experiments that a representative previous TTC-threshold-based RL autonomous-vehicle controller may crash (in both training and testing). In contrast, we verify that our controller SECRM is safe, in training scenarios with a wide range of leader behaviors, and in both regular-driving and emergency-braking test scenarios. We find that SECRM compares favorably in efficiency, comfort, and speed-following to both classical (non-learned) car-following controllers (intelligent driver model, Shladover, Gipps) and a representative RL-based car-following controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.