Introduction: SARS-CoV2 pandemic marks the need to pay attention to bacterial pathogens that can complicate the hospital stay of patients in the intensive care unit (ICU). ESKAPE bacteria which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae are considered the most important, because of their close relationship with the development of ventilator-associated pneumonia (VAP). The aim of this work was to identify and characterize ESKAPE bacteria and to detect their possible clonal spread in medical devices, patients, and medical personnel of the ICU for COVID-19 patients of the Hospital Juarez de Mexico.
Methodology: Genetic identification of ESKAPE bacteria was performed by analyzing the 16S rRNA gene. Resistance assays were performed according to the CLSI guidelines. Assembly of AdeABCRS operon and inhibition assays of pumps efflux in Acinetobacter baumannii isolates were performed. Associated gene involved in biofilm formation (icaA) was performed in isolates belonging to the Staphylococcus genus. Finally, typing by ERIC-PCR and characterization of mobile genetic element SCCmec were done.
Results: Heterogeneous distribution of ESKAPE and non-ESKAPE bacteria was detected in various medical devices, patients, and medical personnel. Acinetobacter baumannii and Staphylococcus aureus were the predominant ESKAPE members. The analysis of intergenic regions revealed an important clonal distribution of A. baumannii (AdeABCRS+). Genotyping of SCCmec mobile genetic elements and the icaA gene showed that there is no clonal distribution of S. aureus.
Conclusions: Clonal spread of A. baumannii (AdeABCRS+) highlights the importance of adopting good practices for equipment disinfection, surfaces and management of COVID-19 patients.
Objective. To identify the etiologic agent responsible for a disease outbreak following an overflow of sewage water in Valle de Chalco, Mexico. Material and Methods. A retrospective cross-sectional study was carried out. Rectal samples were collected from the population of Chalco valley, who suffered from diarrhea and vomiting during a natural disaster that took place on May 31, 2000. The Instituto de Diagnóstico y Referencia Epidemiológicos (Epidemic Reference and Diagnosis Institute, InDRE, Ministry of Health), received 1521 rectal swab samples from diarrhea cases, to test for E. coli strains. Statistical analysis was performed to find a difference of proportions between cases and non-cases (chi-squared test). ETEC, EIEC, EPEC and EHEC pathogenic E. coli groups were hybridized by colony blot. Results. Strains isolated were ETEC (62.2%), EIEC (0.84%), EPEC (0.84%), and EHEC non-O157:H7 (0.08%); there was no hybridization in 36.02% of E. coli strains. Other isolated microorganisms were Salmonella spp (0.45%) and Shigella spp (0.06%). Conclusions. Enterotoxigenic E. coli was the most likely etiologic agent. Sanitary control strategies should be targeted to preventing outbreaks caused by this pathogenic agent.
Introduction: Infections acquired in hospitals are the cause of high morbidity and mortality and with the emergence of resistant bacteria, the problem is greater. The aim of this work was to determine the genetic characteristics and timeline of Klebsiella pneumoniae blaNDM-1 carrying a class 1 integron involved in an intrahospital outbreak.
Methodology: Investigation was made from the first detection of K. pneumoniae blaNDM-1, strain “466”, and the last clone “423”. 16S rRNA gene analysis showed that 466 strain and clones were related to K. pneumoniae. Extended-spectrum β-lactamases (ESBL) was detected according to the Clinical and Laboratory Standards Institute (CLSI) and real time-PCR. Typing of K. pneumoniae blaNDM-1 strains was carried by ERIC-PCR and sequencing the variable region of the integrons were performed.
Results: A cluster of six resistant isolates of K. pneumoniae blaNDM-1 was detected in intensive care unit (ICU), internal medicine (IM) and orthopedics (OT). Timeline revealed that the first bacterial identification was in ICU and the last clone in OT service. The array genetic of variable region was “IntI/aadA5-drfA17/qacEΔ1-Sul1”.
Conclusions: The evidences highlight the importance of the epidemiological surveillance of Extended-spectrum β-lactamases (ESBL) strains, as well as the need for molecular epidemiological studies to identify the routes of transmission and the contamination sources within health personnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.