This brief historical review focuses on durum wheat domestication and breeding in the Mediterranean region. Important milestones in durum wheat breeding programs across the countries of the Mediterranean basin before and after the Green Revolution are discussed. Additionally, the main achievements of the classical breeding methodology are presented using a comparison of old and new cultivars. Furthermore, current breeding goals and challenges are analyzed. An overview of classical breeding methods in combination with current molecular techniques and tools for cultivar development is presented. Important issues of seed quality are outlined, focusing on protein and characteristics that affect human health and are connected with the consumption of wheat end-products.
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies.
This study investigates the effect of different nitrogen fertilization levels on the agronomic traits of five Greek oregano populations. Nitrogen supply positively affected dry bio-mass production, with the highest accumulation recorded at 80 kg N ha−1 (N2), which was 59% higher compared to the control plots (no additional nitrogen). In contrast, the essential oil content (mL 100 g−1 DW) was reduced, with the control treatment showing a 15% higher value compared to the mean value of the nitrogen treatments. However, nitrogen supply positively affected the essential oil yield (L ha−1), and the highest value was recorded at 80 kg N ha−1, (N2), showing a 40% increase compared to the control. A wide phenotypic variation among the five populations was also observed. In the three-year analysis, the population with the highest dry biomass production was Papadates (92% higher), that with the highest essential oil content was Vytina (25% higher), and the highest essential oil yield was observed for Papadates and Litochoro (57% and 51% higher, respectively), compared to the least yielding population. Significant interactions were also found between nitrogen levels and populations, implying that, in all cases, nitrogen levels should be specified for each population in order to optimize oregano productivity in sustainable farming systems.
Tomato is one of the most consumed fruit vegetables globally and is a high dietary source of minerals, fiber, carotenoids, and vitamin C. The tomato is also well known for its nutraceutical chemical content which strengthens human immune systems and is protective against infectious and degenerative diseases. For this reason, there has been recent emphasis on breeding new tomato cultivars with nutraceutical value. Most of the modern tomato cultivars are F1 hybrids, and many of the characteristics associated with fruit quality have additive gene action; so, in theory, inbred vigor could reach hybrid vigor. A sum of 20 recombinant lines was released from the commercial single-cross hybrids Iron, Sahara, Formula, and Elpida, through a breeding process. Those recombinant lines were evaluated during spring–summer 2015 under organic farming conditions in a randomized complete block design (RCBD) experimental design with three replications. A sum of eleven qualitative characteristics of the fruit was recorded on an individual plant basis. Results from this study indicated that the simultaneous selection of individual tomato plants, both in terms of their high yield and desired fruit quality characteristics, can lead to highly productive recombinant lines with integrated quality characteristics. So, inbred vigor can reach and even surpass hybrid vigor. The response to selection for all characteristics evaluated shows additive gene action of all characteristics measured. These recombinant lines can fulfill this role as alternatives to hybrid cultivars and those that possess high nutritional values to function as functional-protective food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.