High-velocity oxygen fuel thermal spray stainless steel coatings are desirable for their excellent erosion resistance. However, the fabrication process can lead to a decrease in corrosion resistance in comparison to the original bulk material. Here we produced stainless steel coatings on stainless steel substrates using varying deposition parameters to investigate the corrosion properties of the resulting composite steels and elucidate the corrosion behavior both on the macro and micro scale. Macro potentiodynamic polarization measurements carried out in corroding environments demonstrated the rate of degradation of the Fe-Cr alloy coating. After short immersion periods, the coatings showed iron-like active corroding behavior and no passivation regions on the anodic branch. Over time, the coating's corrosion behavior began to change to signify similar results to that of pure chromium. Ex-situ electron microscopy and elemental composition revealed a Cr oxide rich layer left on the coating's surface. Micro electrochemical techniques including scanning electrochemical microscopy and scanning micropipette contact method were employed over the coatings and powdered material, respectively, to show that the lack of protective passivity the thermal spray coatings possess is mostly inherited from the atomized powdered stainless steel material.
As most superhydrophobic coatings are made of soft material, the need for harder, more robust films is evident in applications where erosional degradation is of concern. The work herein describes a methodology to produce superhydrophobic stainless steel thermal spray coatings using the high-velocity oxygen fuel technique. Due to the use of kerosene fuel source, a carbon rich film is formed on the surface of the thermal spray coatings, lowering the surface
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.