A technique based on the Wiener path integral (WPI) is developed for determining the stochastic response of diverse nonlinear systems with fractional derivative elements. Specifically, a reduced-order WPI formulation is proposed, which can be construed as an approximation-free dimension reduction approach that renders the associated computational cost independent of the total number of stochastic dimensions of the problem. In fact, the herein developed technique can determine, directly, any lower-dimensional joint response probability density function corresponding to a subset only of the response vector components. This is done by utilizing an appropriate combination of fixed and free boundary conditions in the related variational, functional minimization, problem. Notably, the reduced-order WPI formulation is particularly advantageous for problems where the interest lies in few only specific degrees-of-freedom whose stochastic response is critical for the design and optimization of the overall system. An indicative numerical example is considered pertaining to a stochastically excited tuned mass-damper-inerter nonlinear system with a fractional derivative element. Comparisons with relevant Monte Carlo simulation data demonstrate the accuracy and computational efficiency of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.