Semantic image segmentation for autonomous driving is a challenging task due to its requirement for both effectiveness and efficiency. Recent developments in deep learning have demonstrated important performance boosting in terms of accuracy. In this paper, we present a comprehensive overview of the state-of-the-art semantic image segmentation methods using deep-learning techniques aiming to operate in real time so that can efficiently support an autonomous driving scenario. To this end, the presented overview puts a particular emphasis on the presentation of all those approaches which permit inference time reduction, while an analysis of the existing methods is addressed by taking into account their end-to-end functionality, as well as a comparative study that relies upon a consistent evaluation framework. Finally, a fruitful discussion is presented that provides key insights for the current trend and future research directions in real-time semantic image segmentation with deep learning for autonomous driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.