Horseweed, [Conyza canadensis (L.) Cronq.], has been the most frequent weed species to develop resistance to glyphosate in various parts of the world, including Greece. In order to investigate the resistance mechanism, susceptible (S) and resistant ®) populations collected from regions across Greece were studied. Real-time PCR was used to determine the expression levels of the key enzyme EPSPS and the four ABC transporter genes M10, M11, M7 and P3. The expression level of those genes was studied at early (1DAT) or late (4DAT) times after glyphosate treatment, applied at normal (720 g a.i. ha −1 ) and high (5.760 g a.i. ha −1 ) glyphosate rate. The proposed resistance mechanism was found not to be due to a point mutation at codon 106 of the EPSPS gene that regulates glyphosate metabolism (target-site resistance), but rather involved synchronization of the overexpression of EPSPS and ABC-transporter genes. This synchronization mechanism was based on (1) the time of induction and duration of gene overexpression, and (2) regulation by the initial glyphosate load.
Overreliance on glyphosate can increase the risks of reduced efficacy of the herbicide on weeds and weed resistance, even in regions without glyphosate-resistant crops. That is the reality in Greece, with frequent reports of reduced efficacy of glyphosate against increasingly problematic weeds, such as Conyza spp. The objectives of this study were to determine the occurrence of glyphosate resistance in hairy fleabane populations in central and southern Greece and the effect of weed growth stage on glyphosate efficacy under controlled environmental conditions and to evaluate alternative herbicides in field trials for control of glyphosate-resistant and -susceptible hairy fleabane. Plants from 60 accessions of hairy fleabane, sampled from five prefectures in Greece, were sprayed with glyphosate at 0.36 kg ae ha−1; 15 were classified as potentially resistant. After initial screening, 15 potentially susceptible or resistant accessions were selected and dose–response experiments were conducted. Glyphosate rates required to control some accessions were four to seven times greater than that for control of the reference susceptible accession, AR4. Sensitivity of a resistant hairy fleabane accession to glyphosate was strongly dependent on growth stage, with plants at the seedling stage being most sensitive to the herbicide. A field trial indicated that diquat, glufosinate, or glufosinate + oxyfluorfen controlled glyphosate-resistant or -susceptible hairy fleabane. These herbicides, along with various integrated management strategies, have good potential to manage or slow the spread of glyphosate resistance in this species.
The demand for organically grown products is increasing because many people are concerned about the environment and believe that organic products are healthier than conventional ones. Some studies have shown that organically produced tomato fruits contain higher levels of antioxidants, polyphenols and carotenoids than those produced conventionally. The objective of this study was to evaluate the influence of organic and inorganic fertilization on agronomic and quality characteristics of the processing tomato. The 2-year experiment was laid out in a randomized complete block design, with three replications and three fertilization treatments (untreated, compost and inorganic fertilizer). The results showed that the highest fruit number per plant (98.5), average fruit weight (63.6 g) and fruit yield (168.0 t ha−1) were obtained under inorganic fertilization. The highest total soluble solids (4.39 °Brix) and total soluble solids to titratable acidity ratio (17.4), L* (43.4) and a* (35.4) values, as well as the highest lycopene content (88.5 mg kg−1 f.w). were achieved through the application of organic fertilizer. Significantly higher total soluble solids and total soluble solids to titratable acidity ratio in organically grown tomatoes are particularly important to the processing tomato industry. Finally, the highest lycopene content produced under organic fertilization as well as the non-significant difference between the organic and conventional tomatoes in terms of lycopene yield make organic processing tomatoes suitable for lycopene production.
Agricultural systems in the EU have become more vulnerable and less sustainable due to an overreliance on herbicides and the tremendous increase in herbicide-resistant weeds. The EU Green Deal aims to reduce the use and risk of chemical pesticides by 50% by 2030, although it is still undefined whether a reduction in herbicide use could be feasible in different farming systems and situations. This review aims to provide a holistic framework for sustainable crop and weed management to reduce the herbicide input and ensure crop protection. Current and future dilemmas and policies that need to be handled to ensure the agroecological transition of the EU’s agricultural systems are also discussed. The integration of non-chemical alternatives for integrated weed management is feasible and includes novel cultivation techniques (e.g., intercropping, false seedbed, reduced tillage, crop rotation and diversification, adjustments on sowing densities and dates), non-chemical tools (e.g., flaming, seed coating, beneficial microorganisms, mechanical weeding, biocontrol agents and natural herbicides), competitive plant material (hybrids and cultivars, cover crops, service crops), and new technologies and precision agriculture tools (e.g., Decision Support Systems, robots, remote sensing, UAVs, omics and nanotechnology). A special focus should be appointed to agroecology and biodiversity conservation.
Weeds pose a major threat to world agriculture by reducing detrimentally crop yield and quality. However, at the same time, weeds are major interacting components of the agroecosystems. Abundance and diversity of weeds vary significantly among the several communities. In order to evaluate each community's structure and the interactions among them, several population indices are used as key tools. In parallel, various cultivation and land management strategies, such as tillage and fertilization, are commonly used in terms of integrated weed management. Estimating the response of weed species on those practices is crucial for both biodiversity maintenance and alternative weed control methods. Many experiments have confirmed the fundamental role of tillage intensity and nutrition supply in weed species' abundance and diversity. For instance, in some studies, the abundance of perennial weeds was doubled under reduced tillage intensity. In addition, higher values of Shannon-Weiner and Pielou indices were reported in the PK fertilization treatment compared to the control and NK fertilization treatments. The objective of this paper is to provide a brief overview of the key results of these experiments and summarize the part of the literature related to the effect of tillage systems and fertilization on weed species abundance and diversity. Such knowledge could contribute to the sound design and implementation of integrated weed management programs which in turn may lead to a decrease in the density of serious and noxious weeds and an increase in the overall balance of agroecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.