In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of climate-smart farming tools. Even though AI-driven digital agriculture can offer high-performing predictive functionalities, it lacks tangible quantitative evidence on its benefits to the farmers. Field experiments can derive such evidence, but are often costly and time consuming. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators. This way, we can increase farmers' trust by enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to increase productivity and secure a sustainable and resilient agriculture against a changing climate. As a case study, we perform an empirical evaluation of a recommendation system for optimal cotton sowing, which was used by a farmers' cooperative during the growing season of 2021. We leverage agricultural knowledge to develop a causal graph of the farm system, we use the back-door criterion to identify the impact of recommendations on the yield and subsequently estimate it using several methods on observational data. The results show that a field sown according to our recommendations enjoyed a significant increase in yield (12% to 17%).
Helicoverpa Armigera, or cotton bollworm, is a serious insect pest of cotton crops that threatens the yield and the quality of lint. The timely knowledge of the presence of the insects in the field is crucial for effective farm interventions. Meteo-climatic and vegetation conditions have been identified as key drivers of crop pest abundance. In this work, we applied an interpretable classifier, i.e., Explainable Boosting Machine, which uses earth observation vegetation indices, numerical weather predictions and insect trap catches to predict the onset of bollworm harmfulness in cotton fields in Greece. The glass-box nature of our approach provides significant insight on the main drivers of the model and the interactions among them. Model interpretability adds to the trustworthiness of our approach and therefore its potential for rapid uptake and context-based implementation in operational farm management scenarios. Our results are satisfactory and the importance of drivers, through our analysis on global and local explainability, is in accordance with the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.