The continuous development of new materials and larger and/or more complex structures drives the need for the development of more robust, accurate, and sensitive Structural Health Monitoring (SHM) techniques. In the present work, a novel vibration-based damage-detection method that contributes into the SHM field is presented using Metaheuristic algorithms coupled with optimal Finite Element Models that can effectively localize damage. The proposed damage-detection framework can be applied in any kind of detailed structural FE model, while requiring only the output information of the dynamic response of the structure. It can effectively localize damage in a structure by highlighting not only the affected part of the structure but also the specific damaged area inside the part. First, the optimal FE model of the healthy structure is developed using appropriate FE model updating techniques and experimental vibration measurements, simulating the undamaged condition. Next, the main goal of the proposed method is to create a damaged FE model that approximates the dynamic response of the damaged structure. To achieve this, a parametric area is inserted into the FE model, changing stiffness and mass to simulate the effect of the physical damage. This area is controlled by the metaheuristic optimization algorithm, which is embedded in the proposed damage-detection framework. On this specific implementation of the framework, the Particle Swarm Optimization (PSO) algorithm is selected which has been used for a wide variety of optimization problems in the past. On the PSO’s search space, two parameters control the stiffness and mass of the damaged area while additional location parameters control the exact position of the damaged area through the FE model. For effective damage localization, the Transmittance Functions from acceleration measurements are used which have been shown to be sensitive to structural damage while requiring output-only information. Finally, with proper selection of the objective function, the error that arises from modeling a physical damage with a linear damaged FE model can be minimized, thus creating a more accurate prediction for the damaged location. The effectiveness of the proposed SHM method is demonstrated via two illustrative examples: a simulated small-scale model of a laboratory-tested vehicle-like structure and a real experimental CFRP composite beam structure. In order to check the robustness of the proposed method, two small damage scenarios are examined for each validation model and combined with random excitations.
Abstract. In this work, the effectiveness of a computational framework to handle large scale linear and nonlinear models is presented by calibrating a high-fidelity
Vibration-based damage detection methods are a subcategory of Structural Health Monitoring (SHM) methods that rely on the fact that structural damage will affect the dynamic characteristic of a structure. The presented methodology uses Finite Element Models coupled with a metaheuristic optimization algorithm in order to locate the damage in a structure. The search domains of the optimization algorithm are the variables that control a parametric area, which is inserted into the FE model. During the optimization procedure, this area changes location, stiffness, and mass to simulate the effect of the physical damage. The final output is a damaged FE model which can approximate the dynamic response of the damaged structure and indicate the damaged area. For the current implementation of this Damage Detection Framework, the Particle Swarm Optimization algorithm is used. As an effective metric of the comparison between the FE model and the experimental structure, Transmittance Functions (TF) are used that require output only acceleration signals. As with most model-based methods, a common concern is the modeling error and how this can be surpassed. For this reason, the Dynamic Time Wrapping (DTW) algorithm is applied. When damage occurs in a structure it creates some differences between the Transmittance Functions (TF) of the healthy and the damaged state. With the use of DTW, the damaged pattern is recreated around the TF of the FE model, while creating the same differences and, thus, minimizing the modeling error. The effectiveness of the proposed methodology is tested on a small truss structure that consists of Carbon-Fiber Reinforced Polymer (CFRP) filament wound beams and aluminum connectors, where four cases are examined with the damage to be located on the composite material.
An integrated reverse engineering methodology is proposed for a large-scale fully operational steam turbine rotor, considering issues that include developing the CAD and FE model of the structure, as well as the applicability of model updating techniques based on experimental modal analysis procedures. First, using an integrated reverse engineering strategy, the digital shape of the three sections of a steam turbine rotor was designed and the final parametric CAD model was developed. The finite element model of the turbine was developed using tetrahedral solid elements resulting in fifty-five million DOFs. Imposing impulsive loading in a free-free state, measured acceleration time histories were used to obtain the dynamic responses and identify the modal characteristics of each section of the complete steam turbine. Experimentally identified modal modes and modal frequencies compared to the FE model predicted ones constitute the actual measure of fit. CMA-ES optimization algorithm is then implemented in order to finely tune material parameters, such as modulus of elasticity and density, in order to best match experimental and numerical data. Comparing numerical and experimental results verified the reliability and accuracy of the applied methodology. The identified finite element model is representative of the initial structural condition of the turbine and is used to develop a simplified finite element model, which then used for the turbine rotordynamic analysis. Accumulated knowledge of the dynamic behavior of the specific steam turbine system, could be implemented in order to evaluate stability or instability states, fatigue growth in the turbine blades, changes in the damping of the bearing system and perform necessary scheduled optimal and cost-effective maintenance strategies. Additionally, upon a series of scheduled experimental data collection, a permanent output-only vibration SHM system could be installed and even a proper dynamic balancing could be investigated and designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.