In sheet metal manufacturing, the ability to predict failures, such as springback, wrinkling and thinning, are of high importance. The objective of this study is to compare the response surface methodology (RSM) and the artificial neural network (ANN) model for predicting springback during the deep drawing process. In this investigation, friction coefficient, punch speed and blank holder force were considered as input variables. Sample data were planned by the complete factorial design and obtained via numerical simulation. To compare the RSM and ANN models, a goodness of-fit test was performed. The results of the two methods are promising and it is found that the ANN results are more accurate than the RSM results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.