Even with decades of research studies behind octacalcium phosphate (OCP), determination of OCP phase formation has proved to be a cumbersome challenge. Even though obtaining a large quantity of OCP is important for potential clinical uses, it still remains a hindrance to obtain high yields of pure OCP. Taking that into consideration, the purpose of this study was to scale-up OCP synthesis for the first time and to use a multi-technique approach to follow the phase transformation pathway at multiple time points. In the present study, OCP has been synthesized from α-tricalcium phosphate (α-TCP), and subsequently scaled-up tenfold and hundredfold (100 mg → 10 g). The hydrolysis mechanism has been followed and described by using XRD and FTIR spectroscopy, as well as Raman and SEM. Gradual transformation into the OCP phase transpired through dicalcium phosphate dihydrate (brushite, DCPD, up to ~36%) as an intermediary phase. Furthermore, the obtained transitional phases and final OCP phases (across all scale-up levels) were tested with human bone marrow-derived mesenchymal stem cells (hBMSCs), in order to see how different phase mixtures affect the cell viability, and also to corroborate the safety of the scaled-up product. Twelve out of seventeen specimens showed satisfactory percentages of cell viability and confirmed the prospective use of scaled-up OCP in further in vitro studies. The present study, therefore, provides the first scale-up process of OCP synthesis, an in depth understanding of the formation pathway, and investigation of the parameters able to contribute in the OCP phase formation.
In the present manuscript, a brief overview on barium, its possible utilization, and the aftermath of its behavior in organisms has been presented. As a bivalent cation, barium has the potential to be used in a myriad of biochemical reactions. A number of studies have exhibited both the unwanted outcome barium displayed and the advantages of barium laden compounds, tested in in vitro and in vivo settings. The plethora of prospective manipulations covered the area of hydrogels and calcium phosphates, with an end goal of examining barium’s future in the tissue engineering. However, majority of data revert to the research conducted in the 20th century, without investigating the mechanisms of action using current state-of-the-art technology. Having this in mind, set of questions that are needed for possible future research arose. Can barium be used as a substitute for other biologically relevant divalent cations? Will the incorporation of barium ions hamper the execution of the essential processes in the organism? Most importantly, can the benefits outweigh the harm?
The reduction of tissue cytotoxicity and the improvement of cell viability are of utmost significance, particularly in the realm of green chemistry. Despite substantial progress, the threat of local infections remains a concern. Therefore, hydrogel systems that provide mechanical support and a harmonious balance between antimicrobial efficacy and cell viability are greatly needed. Our study explores the preparation of physically crosslinked, injectable, and antimicrobial hydrogels using biocompatible hyaluronic acid (HA) and antimicrobial ε-polylysine (ε-PL) in different weight ratios (10 wt% to 90 wt%). The crosslinking was achieved by forming a polyelectrolyte complex between HA and ε-PL. The influence of HA content on the resulting HA/ε-PL hydrogel physicochemical, mechanical, morphological, rheological, and antimicrobial properties was evaluated, followed by an inspection of their in vitro cytotoxicity and hemocompatibility. Within the study, injectable, self-healing HA/ε-PL hydrogels were developed. All hydrogels showed antimicrobial properties against S. aureus, P. aeruginosa, E. coli, and C. albicans, where HA/ε-PL 30:70 (wt%) composition reached nearly 100% killing efficiency. The antimicrobial activity was directly proportional to ε-PL content in the HA/ε-PL hydrogels. A decrease in ε-PL content led to a reduction of antimicrobial efficacy against S. aureus and C. albicans. Conversely, this decrease in ε-PL content in HA/ε-PL hydrogels was favourable for Balb/c 3T3 cells, leading to the cell viability of 152.57% for HA/ε-PL 70:30 and 142.67% for HA/ε-PL 80:20. The obtained results provide essential insights into the composition of the appropriate hydrogel systems able to provide not only mechanical support but also the antibacterial effect, which can offer opportunities for developing new, patient-safe, and environmentally friendly biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.