The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. Successful translation of this natural cryoprotective ability into man-made materials would open up new avenues in biomedicine, agrifood and materials science. This review covers recent advances in the field of IBPs and their synthetic analogues, focusing on fundamental insights of biological and technological relevance.
Linked in? Coassembly of an ABA triblock copolymer with charged end blocks and an oppositely charged polyelectrolyte yields gels that respond to changes in concentration, temperature, ionic strength, pH value, and charge composition. Above the critical gel concentration, the triblock copolymers bridge micelles, forming a sample‐spanning transient network of interconnected micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.