The continuous sedimentation process in a clarifier-thickener can be described by a scalar nonlinear conservation law for the local solids volume fraction. The flux density function is discontinuous with respect to spatial position due to feed and discharge mechanisms. Typically, the feed flow cannot be given deterministically and efficient numerical simulation requires a concept for quantifying uncertainty. In this paper uncertainty quantification is expressed by a new hybrid stochastic Galerkin (HSG) method that extends the classical polynomial chaos approximation by multiresolution discretization in the stochastic space. The new approach leads to a deterministic hyperbolic system for a finite number of stochastic moments which is however partially decoupled and thus allows efficient parallelisation. The complexity of the problem is further reduced by stochastic adaptivity. For the approximate solution of the resulting high-dimensional system a finite volume scheme is introduced. Numerical experiments cover one-and two-dimensional situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.