[1] Subsurface stormflow is a dominant runoff-producing mechanism in many upland environments. While there have been many trench-based experimental studies, most of these investigations have examined only a handful of storms. We analyzed subsurface stormflow in response to 147 rainstorms at a trenched hillslope in the Panola Mountain Research Watershed between February 1996 and May 1998. We used this unique long-term data set to examine how often the hillslope delivers water, the contribution of pipe flow to total flow, and the persistence of spatial patterns of flow at the trench face. The long-term data set showed a clear threshold response of subsurface stormflow to storm total precipitation. For storms smaller than the precipitation threshold of 55 mm, little subsurface stormflow was observed. For events exceeding the threshold, there was an almost 2 orders of magnitude increase in subsurface flow compared to subsurface flow from storms smaller than the threshold. Pipe flow was an important component of total subsurface flow and showed a similar threshold behavior. We observed a linear relation between total pipe flow and total subsurface stormflow. Contributions of different trench segments to total trench flow changed seasonally and with changes in precipitation and antecedent conditions. Our results suggest that the threshold relation at the hillslope scale may be an emergent behavior of combined processes internal to the hillslope and perhaps point the way toward how to characterize hillslope processes. A companion paper (Tromp-van Meerveld and McDonnell, 2006) explores the physical mechanisms responsible for the threshold behavior.
Abstract. This study investigates the role of soil moisture on the threshold runoff response in a small headwater catchment in the Italian Alps that is characterised by steep hillslopes and a distinct riparian zone. This study focuses on: (i) the threshold soil moisture-runoff relationship and the influence of catchment topography on this relation; (ii) the temporal dynamics of soil moisture, streamflow and groundwater that characterize the catchment's response to rainfall during dry and wet periods; and (iii) the combined effect of antecedent wetness conditions and rainfall amount on hillslope and riparian runoff. Our results highlight the strong control exerted by soil moisture on runoff in this catchment: a sharp threshold exists in the relationship between soil water content and runoff coefficient, streamflow, and hillslope-averaged depth to water table. Low runoff ratios were likely related to the response of the riparian zone, which was almost always close to saturation. High runoff ratios occurred during wet antecedent conditions, when the soil moisture threshold was exceeded. In these cases, subsurface flow was activated on hillslopes, which became a major contributor to runoff. Antecedent wetness conditions also controlled the catchment's response time: during dry periods, streamflow reacted and peaked prior to hillslope soil moisture whereas during wet conditions the opposite occurred. This difference resulted in a hysteretic behaviour in the soil moisture-streamflow relationship. Finally, the influence of antecedent moisture conditions on runoff was also evident in the relation between cumulative rainfall and total stormflow. Small storms during dry conditions produced low stormflow amounts, likely mainly from overland flow from the near saturated riparian zone. Conversely, for rainfall events during wet conditions, higher stormflow values were observed and hillslopes must have contributed to streamflow.
This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come. ARTICLE HISTORY
Abstract:The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882-1676 mm of rainfall over a ¾5Ð5 m ð 12 m area on the lower hillslope during ¾8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day 1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day 1 was collected at the trench and <4 mm day 1 was transpired by the trees, with residual bedrock leakage of >175 mm day 1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time-scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.