What we see is influenced by where we look. When confronted with multiple relevant targets, inaccurate saccade target selection can impair perceptual performance. Here we ask whether endpoint selection can be optimized by the mechanism maintaining saccade accuracy: saccade adaptation. Therefore, we introduce a double-target adaptation task, where a presaccadic peripheral stimulus (plaid) splits vertically into its two components (Gabor patches) during horizontal saccades. While both targets were task-relevant, one of them provided more information for the perceptual task, because it could only be identified after the saccade with near-foveal vision. The other target was highly salient and could also be identified in the presaccadic plaid using peripheral vision. This double-target paradigm induced saccade adaptation: Without a perceptual task, participants adapted to the salient target. When both targets were judged sequentially, participants mostly adapted to the target they had to judge first. When targets were judged simultaneously, endpoints were biased toward the informative target but showed no gradual learning and fell short of optimality. We observed gradual adaptation when targets shifted randomly such that a strategic adjustment of endpoints was not possible. Overall, these findings show that when multiple targets compete, our oculomotor system can learn to adjust endpoints in order to maximize information for perception. Yet individual variability and other factors affecting target priority play a crucial role.
Motor adaptation maintains movement accuracy over the lifetime. Saccadic eye movements have been used successfully to study the mechanisms and neural basis of adaptation. Using behaviorally irrelevant targets, it has been shown that saccade adaptation is driven by errors only in a brief temporal interval after movement completion. However, under natural conditions, eye movements are used to extract information from behaviorally relevant objects and to guide actions manipulating these objects. In this case, the action outcome often becomes apparent only long after movement completion, outside the supposed temporal window of error evaluation. Here, we show that saccade adaptation can be driven by error signals long after the movement when using behaviorally relevant targets. Adaptation occurred when a task-relevant target appeared two seconds after the saccade, or when a retro-cue indicated which of two targets, stored in visual working memory, was task-relevant. Our results emphasize the important role of visual working memory for optimal movement control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.