ORCID IDs: 0000-0002-6592-4445 (J.F.H.); 0000-0001-6633-9769 (M.K.); 0000-0002-1317-7716 (R.S.); 0000-0001-7734-3771 (S.W.-P.).The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and TRANSPARENT TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes.One well-studied example for a single regulatory protein complex driving the evolution of multiple traits in plants is the R2R3MYB/basic helix-loop-helix (bHLH)/WD40 (MBW) complex (Broun, 2005;Koes et al., 2005;Ramsay and Glover, 2005;Serna and Martin, 2006;Feller et al., 2011). Together, the corresponding three genes are required for the regulation of metabolic pathways (anthocyanin and proanthocyanidin production) and the differentiation of epidermal cell types in higher plants (Broun, 2005;Koes et al., 2005;Ramsay and Glover, 2005;Serna and Martin, 2006;
SUMMARYTrichome and root hair patterning is governed by a gene regulatory network involving TTG1 and several homologous MYB and bHLH proteins. The bHLH proteins GL3 and EGL3 are core components that serve as a regulatory platform for the activation of downstream genes. In this study we show that a homologue of GL3 and EGL3, AtMYC1, can regulate the intracellular localisation of GL1 and TRY. AtMYC1 protein is predominantly localised in the cytoplasm and can relocate GL1 from the nucleus into the cytoplasm. Conversely, AtMYC1 can be recruited into the nucleus by TRY and CPC, concomitant with a strong accumulation of TRY and CPC in the nucleus. When AtMYC1 is targeted to the nucleus or cytoplasm by nuclear localisation or export signals (NLS or NES), respectively, the intracellular localisation of GL1 and TRY also changes accordingly. The biological significance of this intracellular localisation is suggested by the finding that the efficiency of rescue of trichome number is significantly altered in NES and NLS fusions as compared with wild-type AtMYC1. Genetic analysis of mutants and overexpression lines supports the hypothesis that AtMYC1 represses the activity of TRY and CPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.