In this paper, some new integral curves are defined in three-dimensional Euclidean space by using a new frame of a polynomial spatial curve. The Frenet vectors, curvature and torsion of these curves are obtained by means of new frame and curvatures. We give the characterizations and properties of these integral curves under which conditions they are general helix. Also, the relationships between these curves in terms of being some kinds of associated curves are introduced. Finally, an example is illustrated.
In this paper, we introduce new adjoint curves which are associated curves in Euclidean space of three
dimension. They are generated with the help of integral curves of special Smarandache curves. We attain some
connections between Frenet apparatus of these new adjoint curves and main curve. We characterize these curves in
which conditions they are general helix and slant helix. Finally, we exemplify them with figures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.