We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.
We investigate the iteration of a sequence of local and pair unitary
transformations, which can be interpreted to result from a Turing-head
(pseudo-spin $S$) rotating along a closed Turing-tape ($M$ additional
pseudo-spins). The dynamical evolution of the Bloch-vector of $S$, which can be
decomposed into $2^{M}$ primitive pure state Turing-head trajectories, gives
rise to fascinating geometrical patterns reflecting the entanglement between
head and tape. These machines thus provide intuitive examples for quantum
parallelism and, at the same time, means for local testing of quantum network
dynamics.Comment: Accepted for publication in Phys.Rev.A, 3 figures, REVTEX fil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.