Objective Suicide is one of the leading causes of death worldwide, yet clinicians find it difficult to reliably identify individuals at high risk for suicide. Algorithmic approaches for suicide risk detection have been developed in recent years, mostly based on data from electronic health records (EHRs). Significant room for improvement remains in the way these models take advantage of temporal information to improve predictions. Materials and Methods We propose a temporally enhanced variant of the random forest (RF) model—Omni-Temporal Balanced Random Forests (OT-BRFs)—that incorporates temporal information in every tree within the forest. We develop and validate this model using longitudinal EHRs and clinician notes from the Mass General Brigham Health System recorded between 1998 and 2018, and compare its performance to a baseline Naive Bayes Classifier and 2 standard versions of balanced RFs. Results Temporal variables were found to be associated with suicide risk: Elevated suicide risk was observed in individuals with a higher total number of visits as well as those with a low rate of visits over time, while lower suicide risk was observed in individuals with a longer period of EHR coverage. RF models were more accurate than Naive Bayesian classifiers at predicting suicide risk in advance (area under the receiver operating curve = 0.824 vs. 0.754, respectively). The proposed OT-BRF model performed best among all RF approaches, yielding a sensitivity of 0.339 at 95% specificity, compared to 0.290 and 0.286 for the other 2 RF models. Temporal variables were assigned high importance by the models that incorporated them. Discussion We demonstrate that temporal variables have an important role to play in suicide risk detection and that requiring their inclusion in all RF trees leads to increased predictive performance. Integrating temporal information into risk prediction models helps the models interpret patient data in temporal context, improving predictive performance.
Clinical risk prediction models powered by electronic health records (EHRs) are becoming increasingly widespread in clinical practice. With suicide-related mortality rates rising in recent years, it is becoming increasingly urgent to understand, predict, and prevent suicidal behavior. Here, we compare the predictive value of structured and unstructured EHR data for predicting suicide risk. We find that Naive Bayes Classifier (NBC) and Random Forest (RF) models trained on structured EHR data perform better than those based on unstructured EHR data. An NBC model trained on both structured and unstructured data yields similar performance (AUC = 0.743) to an NBC model trained on structured data alone (0.742, p = 0.668), while an RF model trained on both data types yields significantly better results (AUC = 0.903) than an RF model trained on structured data alone (0.887, p < 0.001), likely due to the RF model’s ability to capture interactions between the two data types. To investigate these interactions, we propose and implement a general framework for identifying specific structured-unstructured feature pairs whose interactions differ between case and non-case cohorts, and thus have the potential to improve predictive performance and increase understanding of clinical risk. We find that such feature pairs tend to capture heterogeneous pairs of general concepts, rather than homogeneous pairs of specific concepts. These findings and this framework can be used to improve current and future EHR-based clinical modeling efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.