Energy system optimization models (ESOMs) are widely used to generate insight that informs energy and environmental policy. Using ESOMs to produce policy-relevant insight requires significant modeler judgement, yet little formal guidance exists on how to conduct analysis with ESOMs. To address this shortcoming, we draw on our collective modelling experience and conduct an extensive literature review to formalize best practice for energy system optimization modelling. We begin by articulating a set of overarching principles that can be used to guide ESOM-based analysis. To help operationalize the guiding principles, we outline and explain critical steps in the modeling process, including how to formulate research questions, set spatiotemporal boundaries, consider appropriate model features, conduct and refine the analysis, quantify uncertainty, and communicate insights. We highlight the need to develop and refine formal guidance on ESOM application, which comes at a critical time as ESOMs are being used to inform national climate targets.
Integrated assessment models (IAMs) have emerged as key tools for building and assessing long term climate mitigation scenarios. Due to their central role in the recent IPCC assessments, and international climate policy analyses more generally, and the high uncertainties related to future projections, IAMs have been critically assessed by scholars from different fields receiving various critiques ranging from adequacy of their methods to how their results are used and communicated. Although IAMs are conceptually diverse and evolved in very different directions, they tend to be criticised under the umbrella of ‘IAMs’. Here we first briefly summarise the IAM landscape and how models differ from each other. We then proceed to discuss six prominent critiques emerging from the recent literature, reflect and respond to them in the light of IAM diversity and ongoing work and suggest ways forward. The six critiques relate to (a) representation of heterogeneous actors in the models, (b) modelling of technology diffusion and dynamics, (c) representation of capital markets, (d) energy-economy feedbacks, (e) policy scenarios, and (f) interpretation and use of model results.
The Energy Modeling Forum 28 (EMF28) study systematically explores the energy system transition required to meet the European goal of reducing greenhouse gas (GHG) emissions by 80% by 2050. The 80% scenario is compared to a reference case that aims to achieve a 40% GHG reduction target. The paper investigates mitigation strategies beyond 2020 and the interplay between different decarbonization options. The models present different technology pathways for the decarbonization of Europe, but a common finding across the scenarios and § § Corresponding author. This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.Climate Change Economics, Vol. 4, Suppl. 1 (2013) models is the prominent role of energy efficiency and renewable energy sources. In particular, wind power and bioenergy increase considerably beyond current deployment levels. Up to 2030, the transformation strategies are similar across all models and for both levels of emission reduction. However, mitigation becomes more challenging after 2040. With some exceptions, our analysis agrees with the main findings of the "Energy Roadmap 2050" presented by the European Commission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.