ObjectivesTo assess the ability to predict individual unfavourable future status and development in the 20m shuttle run test (20MSRT) during adolescence with machine learning (random forest (RF) classifier).MethodsData from a 2-year observational study (2013‒2015, 12.4±1.3 years, n=633, 50% girls), with 48 baseline characteristics (questionnaires (demographics, physical, psychological, social and lifestyle factors), objective measurements (anthropometrics, fitness characteristics, physical activity, body composition and academic scores)) were used to predict: (Task 1) unfavourable future 20MSRT status (identification of individuals in the lowest 20MSRT tertile after 2 years), and (Task 2) unfavourable 20MSRT development (identification of individuals with 20MSRT development in the lowest tertile among adolescents with baseline 20MSRT below median level).ResultsPrediction performance for future 20MSRT status (Task 1) was (area under the receiver operating characteristic curve, AUC) 83% and 76%, sensitivity 80% and 60%, and specificity 78% and 79% in girls and boys, respectively. Twenty variables showed predictive power in boys, 14 in girls, including fitness characteristics, physical activity, academic scores, adiposity, life enjoyment, parental support, social status in school and perceived fitness.Prediction performance for future development (Task 2) was lower and differed statistically from random level only in girls (AUC 68% and 40% in girls and boys).ConclusionRF classifier predicted future unfavourable status in 20MSRT and identified potential individuals for interventions based on a holistic profile (14‒20 baseline characteristics). The MATLAB script and functions employing the RF classifier of this study are available for future precision exercise medicine research.
Background: Overweight and obesity are an increasing phenomenon worldwide. Predicting future overweight or obesity early in the childhood reliably could enable a successful intervention by experts. While a lot of research has been done using explanatory modeling methods, capability of machine learning, and predictive modeling, in particular, remain mainly unexplored. In predictive modeling models are validated with previously unseen examples, giving a more accurate estimate of their performance and generalization ability in real-life scenarios. Objective: To find and review existing overweight or obesity research from the perspective of employing childhood data and predictive modeling methods. Methods: The initial phase included bibliographic searches using relevant search terms in PubMed, IEEE database and Google Scholar. The second phase consisted of iteratively searching references of potential studies and recent research that cite the potential studies.Results: Eight research articles and three review articles were identified as relevant for this review. Conclusions: Prediction models with high performance either have a relatively short time period to predict or/and are based on late childhood data. Logistic regression is currently the most often used method in forming the prediction models. In addition to child's own weight and height information, maternal weight status or body mass index was often used as predictors in the models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.