Larval zebrafish offers a good model to approach brain disease mechanisms, as structural abnormalities of their small brains can be correlated to quantifiable behavior. In this study, the structural alterations in one diencephalic dopaminergic nucleus induced by 1-methyl-4-phenylpyridinium (MPP+), a toxin inducing Parkinson's disease in humans, and those found in several neuronal groups after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the pretoxin, were associated with decreased swimming speed. Detailed cell counts of dopaminergic groups indicated a transient decline of tyrosine hydroxylase expressing neurons up to about 50% after MPTP. The MPTP effect was partly sensitive to monoamine oxidase inhibitor deprenyl. Detailed analysis of the developing catecholaminergic cell groups suggests that the cell groups emerged at their final positions and no obvious significant migration from the original positions was seen. One 5-HT neuron group was also affected by MPTP treatment, whereas other groups remained intact, suggesting that the effect is selective. New nomenclature for developing catecholaminergic cell groups corresponding to adult groups is introduced. The diencephalic cell population consisting of groups 5,6 and 11 was sensitive to both MPTP and MPP+ and in this respect resembles mammalian substantia nigra. The results suggest that MPTP and MPP+ induce a transient functional deficit and motility disorder in larval zebrafish.
Serotonin (or 5‐hydroxytryptamine; 5‐HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5‐HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post‐fertilization and histochemical enzyme activity from 42 h post‐fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5‐HT but not dopamine and noradrenaline levels. Deprenyl decreased 5‐HT‐immunoreactivity in serotonergic neurons and induced novel ectopic 5‐HT‐immunoreactivity neurons in the diencephalon in a manner dependent on 5‐HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p‐chlorophenylalanine normalized 5‐HT levels and rescued the behavioral alteration, indicating that the symptoms were 5‐HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5‐HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.
Abnormalities in the enzymatic activity of catechol-O-methyltransferase (COMT) contribute to chronic pain conditions, such as temporomandibular disorders (TMD). Thus, we sought to determine the effects of polymorphisms in COMT and functionally-related pain genes in the COMT pathway (estrogen receptor 1: ESR1, guanosine-5-triphosphate cyclohydrolase 1: GCH1, methylenetetrahydrofolate reductase: MTHFR) on COMT enzymatic activity, musculoskeletal pain, and pain-related intermediate phenotypes among TMD cases and healthy controls. Results demonstrate that the COMT rs4680 (val158met) polymorphism is most strongly associated with outcome measures, such that individuals with the minor A allele (met) exhibit reduced COMT activity, increased TMD risk, and increased musculoskeletal pain. Epistatic interactions were observed between the COMT rs4680 polymorphism and polymorphisms in GCH1 and ESR1. Among individuals with the COMT met allele, those with two copies of the GCH1 rs10483639 minor G allele exhibit normalized COMT activity and increased mechanical pain thresholds. Among individuals with the COMT val allele, those with two copies of the ESR1 rs3020377 minor A allele exhibit reduced COMT activity, increased bodily pain, and poorer self-reported health. These data reveal that the GCH1 minor G allele confers a protective advantage among met carriers, while the ESR1 minor A allele is disadvantageous among val carriers. Furthermore, these data suggest that the ability to predict the downstream effects of genetic variation on COMT activity is critically important to understanding the molecular basis of chronic pain conditions.
Background: The mouse C57BL/6 (C57) and DBA/2J (DBA) inbred strains differ substantially in many aspects of their response to drugs of abuse. The development of microarray analyses represents a genome-wide method for measuring differences across strains, focusing on expression differences. In the current study, we carried out microarray analysis in C57 and DBA mice in the nucleus accumbens of drug-naïve and morphine-treated animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.