An optomechanical sensor suitable for the study of quantum effects has been developed and characterized. The sensor reads out the vibrations of a microfabricated miniature silicon mechanical oscillator which forms one end mirror of a high finesse Fabry-Pérot cavity. The mechanical quality factor is up to Qϭ300 000 at 300 K and rises up to Qϭ4ϫ10 6 at 4 K. The thermal noise of the oscillator has been measured in the time and frequency domains at room temperature and at 4.5 K. The prospects for observing the standard quantum limit are discussed.
Bogolyubov-De Gennes equations for the excitations of a Bose condensate in
the Thomas-Fermi regime in harmonic traps of any asymmetry and introduce a
classification of eigenstates. In the case of cylindrical symmetry we emphasize
the presence of an accidental degeneracy in the excitation spectrum at certain
values of the projection of orbital angular momentum on the symmetry axis and
discuss possible consequences of the degeneracy in the context of new
signatures of Bose-Einstein condensation.Comment: 4 pages, LaTeX, other comments are at
http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m−1 K−2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.
We show that aperiodic superlattices exhibit intriguing interplay between phononic coherent wave interference effects and incoherent transport. In particular, broadband Anderson localization results in a drastic thermal conductivity reduction of 98% at room temperature, providing an ultralow value of 1.3 W m −1 K −1 , and further yields an anomalously large thermal anisotropy ratio of ∼10 2 in aperiodic Si=Ge superlattices. A maximum in the thermal conductivity emerges as an unambiguous consequence of phonon Anderson localization at a system length scale bridging the extended and localized transport regimes. The frequency-resolved picture, combined with our lattice dynamical description of Anderson localization, elucidates the rich transport characteristics in these systems and the potential of correlated disorder for sub-to few-THz phononic engineering of heat transport in thermoelectric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.