Muscle atrophy refers to the deterioration of muscle tissue due to a long-term decrease in muscle function. In the present study, we simulated rectus femoris muscle atrophy experimentally and investigated the effect of pulsed electromagnetic field (PEMF) application on the atrophy development through muscle mass, maximal contraction force, and contraction-relaxation time. A quadriceps tendon rupture with a total tenotomy was created on the rats' hind limbs, inhibiting knee extension for 6 weeks, and this restriction of the movement led to the development of disuse atrophy, while the control group underwent no surgery. The operated and control groups were divided into subgroups according to PEMF application (1.5 mT for 45 days) or no PEMF. All groups were sacrificed after 6 weeks and had their entire rectus femoris removed. To measure the contraction force, the muscles were placed in an organ bath connected to a transducer. As a result of the atrophy, muscle mass and strength were reduced in the operated group, while no muscle mass loss was observed in the operated PEMF group. Furthermore, measurements of single, incomplete and full tetanic contraction force and contraction time (CT) did not change significantly in the operated group that received the PEMF application. The PEMF application prevented atrophy resulting from 6 weeks of immobility, according to the contraction parameters. The effects of PEMF on contraction force and CT provide a basis for further studies in which PEMF is investigated as a noninvasive therapy for disuse atrophy development. Bioelectromagnetics. 43:453-461, 2022.
Pulsed magnetic fields (PMFs) have significant therapeutic effects on many disorders. However, the effects of PMF on vascular homeostasis remain unclear. Therefore, in the present study, we investigated the role of in vivo PMF in maintaining vascular homeostasis during H 2 O 2-induced oxidative stress. For this purpose, rats were exposed to PMF (40 Hz, 1.5 mT) for 1 h for a period of 30 days, following which their thoracic aortas were excised. H 2 O 2 was exogenously applied to the aortic rings. Constrictions were measured in a tissue bath using an electrophysiological technique. Bcl-2 and endothelial nitric oxide synthase (eNOS) protein levels were determined by Western blotting. We found lesser H 2 O 2-induced vasoconstriction in the PMF group than in the control group in endothelium-intact (E+) rings. As H 2 O 2 also induces apoptosis, after incubation with H 2 O 2 (40 min) to induce early apoptosis, we added KCl and measured KCl-induced contractions. All the groups, endothelium intact or denuded (E-) showed decreased responses; however, we still observed the effect of PMF in the E+ group due to increased endothelial activity. In addition, PMF increased the expression of the eNOS protein, which might be a key target of PMF. Our results suggest that in vivo application of PMF protects vascular responses through endothelium-mediated mechanisms during oxidative stress. Therefore, PMF might play a protective role against vascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.