Prostate cancer (PCa) is currently the most frequently diagnosed malignancy in the western countries. It is more prevalent in older men with 75% of the incident cases above 65 years old. After radical prostatectomy, approximately 30% of men develop clinical recurrence with elevated serum prostate-specific antigen levels. Therefore, it is important to unravel the molecular mechanisms underlying PCa progression to develop novel diagnostic/therapeutic approaches. In this study, it is aimed to compare the microRNA (miRNA) profile of recurrent and non-recurrent prostate tumor tissues to explore the possible involvement of miRNAs in PCa progression. Total RNA from 41 recurrent and 41 non-recurrent PCa tissue samples were used to investigate the miRNA signature in PCa specimens. First of all, 20 recurrent and 20 non-recurrent PCa samples were profiled using miRNA microarray chips. Of the differentially expressed miRNAs, miR-1, miR-133b and miR-145* were selected for further validation with qRT-PCR in a different set of 21 recurrent and 21 non-recurrent PCa samples. Data were statistically analyzed using two-sided Student's t-test, Pearson Correlation test, Receiver operating characteristic analysis. Our results demonstrated that miR-1 and mir-133b have been significantly downregulated in recurrent PCa specimens in comparison to non-recurrent PCa samples and have sufficient power to distinguish recurrent specimens from non-recurrent ones on their own. Here, we report that the relative expression of miR-1 and mir-133b have been significantly reduced in recurrent PCa specimens in comparison to non-recurrent PCa samples, which can serve as novel biomarkers for prediction of PCa progression.
We have demonstrated the deregulation of miR-145 and SOX2 in laryngeal SCC. Based on these results, we propose that miR-145, as an important regulator of SOX2, carries crucial roles in laryngeal SCC tumorigenesis.
BackgroundEmerging evidences proposed that microRNAs are associated with regulation of distinct physio-pathological processes including development of normal stem cells and carcinogenesis. In this study we aimed to investigate microRNA profile of cancer stem-like cells (CSLCs) isolated form freshly resected larynx cancer (LCa) tissue samples.MethodsCD133 positive (CD133+) stem-like cells were isolated from freshly resected LCa tumor specimens. MicroRNA profile of 12 pair of CD133+ and CD133− cells was determined using microRNA microarray and differential expressions of selvected microRNAs were validated by quantitative real time PCR (qRT-PCR).ResultsMicroRNA profiling of CD133+ and CD133− LCa samples with microarray revealed that miR-26b, miR-203, miR-200c, and miR-363-3p were significantly downregulated and miR-1825 was upregulated in CD133+ larynx CSLCs. qRT-PCR analysis in a total of 25 CD133+/CD133− sample pairs confirmed the altered expressions of these five microRNAs. Expressions of miR-26b, miR-200c, and miR-203 were significantly correlated with miR-363-3p, miR-203, and miR-363-3p expressions, respectively. Furthermore, in silico analysis revealed that these microRNAs target both cancer and stem-cell associated signaling pathways.ConclusionsOur results showed that certain microRNAs in CD133+ cells could be used as cancer stem cell markers. Based on these results, we propose that this panel of microRNAs might carry crucial roles in LCa pathogenesis through regulating stem cell properties of tumor cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2863-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.