Aquaculture is a developing sector in Pakistan. Aquaculture based on river and seas and Pakistan has both these sources of water. In Pakistan Arabian sea exist in Karachi (Sindh) and Gwadar (Baluchistan). Karachi is a big city and known as backbone of Pakistan. There are two ports are available on Karachi coastline Karachi port and port Bin Qasim. Because Karachi is an industrial city so there are many climatic variability occur in Karachi due to global warming. Excretion of wastes in marine water also badly effected aquaculture production. Due to global warming there are many climatic factors can be changed including temperature, rainy days, humidity, precipitation and sunny days. Due to lack of rain Aquaculture also can be effected by drought in Karachi. In this article we observed effects of climatic changings on Aquaculture production in Karachi Pakistan. It was found that Precipitation have highest value of standard deviation as compared to all other varible factors. According to regression analysis values, it was concluded that only sunny days actual values are closer to predicted values to some extent.
While aquaculture is predicted to play a significant role in addressing future global food demands, climate change is having a complex impact on aquaculture output. Climate change will have an effect on output levels, growth, feeding efficiency, and consequently farm productivity and profitability. The most significant challenges facing aquaculture are current and future climate change, which affects the viability of fish farming in Norway and around the world. Global warming and climate change have resulted in a decline in lake waters, an increase in sea level, changes in streams, and changes in precipitation models, all of which have begun to have a negative influence on all aquatic animals. According to the findings of this study, the yearly maximum temperature was 21.1 °C in July and the lowest was -2.8 °C in January, with the minimum temperature ranging from 13.5 °C in July to -7.5 °C in January. The highest average temperature was 17.4 °C in July, and the lowest was -5.1 °C in January. In terms of precipitation, the greatest was 118 mm in August, while the lowest was 56 mm in March. In terms of rainy days, the highest total was 11 mm in August, while the lowest total was 6 mm in March. In November, the humidity reached 90%, whereas in June, it was 66%. On bright days, the highest daylight hours were recorded in June at 12.1 hours, and the lowest hours were recorded in December at 2.5 hours. In this research, we explicitly investigated how these climate components may affect aquaculture in Norway. As a result, because it affects the stability of fish farming, this significant environmental issue must be addressed. It is critical to shed light on and thoroughly analyse the elements related to climate change in order to avoid the damages that result from them, as well as to identify strategies to adapt to these conditions and limit their effects on production and productivity. Corrective efforts should be implemented to reduce climate change and its consequences on fish output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.