This is the first in a series of reviews written by committees of experts of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). A listing of all articles in the series and the Nomenclature Reports from IUPHAR published in Pharmacological Reviews can be found at http://www. GuideToPharmacology.org. This website, created in a collaboration between the British Pharmacological Society (BPS) and the International Union of Basic and Clinical Pharmacology (IUPHAR), is intended to become a "one-stop shop" source of quantitative information on drug targets and the prescription medicines and experimental drugs that act on them. We hope that the Guide to Pharmacology will be useful for researchers and students in pharmacology and drug discovery and provide the general public with accurate information on the basic science underlying drug action.Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs -PAC1, VPAC1 and VPAC2 -belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC1 receptors are selective for PACAP, whereas VPAC1 and VPAC2 respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC2 receptor in susceptibility to schizophrenia and the PAC1 receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the BJP British Journal of Pharmacology DOI:10.1111DOI:10. /j.1476DOI:10. -5381.2012 How to cite: Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR et al. (2012). control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67). LINKED ARTICLESThis article is part of a themed section o...
Abstract:The vulnerability of neurons and the irreversibility of loss make discoveries of neuroprotective compounds fundamentally important. Here, the complete coding sequence of a novel protein (828 amino acids, pI 5.99), derived from mouse neuroglial cells, is revealed. The sequence contained (1) a neuroprotective peptide, NAPVSIPQ, sharing structural and immunological homologies with the previously reported, activity-dependent neurotrophic factor; (2) a glutaredoxin active site; and (3) a zinc binding domain. Gene expression was enriched in the mouse hippocampus and cerebellum and augmented in the presence of the neuropeptide vasoactive intestinal peptide, in cerebral cortical astrocytes. In mixed neuronastrocyte cultures, NAPVSIPQ provided neuroprotection at subfemtomolar concentrations against toxicity associated with tetrodotoxin (electrical blockade), the -amyloid peptide (the Alzheimer's disease neurotoxin), N-methyl-D-aspartate (excitotoxicity), and the human immunodeficiency virus envelope protein. Daily NAPVSIPQ injections to newborn apolipoprotein E-deficient mice accelerated the acquisition of developmental reflexes and prevented short-term memory deficits. Comparative studies suggested that NAPVSIPQ was more efficacious than other neuroprotective peptides in the apolipoprotein E-deficiency model. A potential basis for rational drug design against neurodegeneration is suggested with NAPVSIPQ as a lead compound. The relative enrichment of the novel mRNA transcripts in the brain and the increases found in the presence of vasoactive intestinal peptide, an established neuroprotective substance, imply a role for the cloned protein in neuronal function. Key Words: Vasoactive intestinal peptide-Apolipoprotein E-Learning and memory-Neuronal survival-Molecular cloning-mRNA.
Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP ϩ/Ϫ mice exhibited cognitive deficits, significant increases in phosphorylated tau, tangle-like structures, and neurodegeneration compared with ADNP ϩ/ϩ mice. Increased tau hyperphosphorylation is known to cause memory impairments in neurodegenerative diseases associated with tauopathies, including the most prevalent Alzheimer's disease. The current results suggest that ADNP is an essential protein for brain function and plays a role in normal cognitive performance. ADNP-deficient mice offer an ideal paradigm for evaluation of cognitive enhancers. NAP (NAPVSIPQ) is a peptide derived from ADNP that interacts with microtubules and provides potent neuroprotection. NAP treatment partially ameliorated cognitive deficits and reduced tau hyperphosphorylation in the ADNP ϩ/Ϫ mice. NAP is currently in phase II clinical trials assessing effects on mild cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.