The Internet of Things (IoT) domain has experienced significant growth in recent times. There has been extensive research conducted in various areas of IoT, including localization. Localization of Long Range (LoRa) nodes in outdoor environments is an important task for various applications, including asset tracking and precision agriculture. In this research article, a localization approach using Support Vector Regression (SVR) has been implemented to predict the location of the end node using LoRaWAN. The experiments are conducted in the outdoor campus environment. The SVR used the Received Signal Strength Indicator (RSSI) fingerprints to locate the end nodes. The results show that the proposed method can locate the end node with a minimum error of 36.26 meters and a mean error of 171.59 meters.
Long Range Wide Area Network (LoRaWAN) in the Internet of Things (IoT) domain has been the subject of interest for researchers. There is an increasing demand to localize these IoT devices using LoRaWAN due to the quickly growing number of IoT devices. LoRaWAN is well suited to support localization applications in IoTs due to its low power consumption and long range. Multiple approaches have been proposed to solve the localization problem using LoRaWAN. The Expected Signal Power (ESP) based trilateration algorithm has the significant potential for localization because ESP can identify the signal's energy below the noise floor with no additional hardware requirements and ease of implementation. This research article offers the technical evaluation of the trilateration technique, its efficiency, and its limitations for the localization using LoRa ESP in a large outdoor populated campus environment. Additionally, experimental evaluations are conducted to determine the effects of frequency hopping, outlier removal, and increasing the number of gateways on localization accuracy. Results obtained from the experiment show the importance of calculating the path loss exponent for every frequency to circumvent the high localization error because of the frequency hopping, thus improving the localization performance without the need of using only a single frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.