We have demonstrated the isothermal in vitro amplification and multimerization of several different linear DNA targets using only two primers and the strongly strand-displacing exonuclease-negative Bst DNA polymerase. This reaction has been termed linear target isothermal multimerization and amplification (LIMA). LIMA has been compared with cascade rolling-circle amplification and has been found to be less sensitive but to yield similar variable-length multimeric dsDNA molecules. Products from several different LIMA reactions were characterized by restriction analysis and partial sequence determination. They were found to be multimers of subsets of the target sequence and were not purely primer derived. The sensitivities with respect to target concentration of several different LIMA reactions were determined, and they varied from 0.01 amol to 1 fmol. The sensitivity and specificity of LIMA were further tested using E. coli genomic DNA, and the selective amplification of a transposon fragment was demonstrated. A successful strategy for reducing LIMA-dependent background DNA synthesis in rolling-circle amplification embodiments was devised. This entailed the affinity purification of circular DNA templates before amplification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.