We study a finite element computational model for solving the coupled problem arising in the interaction between a free fluid and a fluid in a poroelastic medium. The free fluid is governed by the Stokes equations, while the flow in the poroelastic medium is modeled using the Biot poroelasticity system. Equilibrium and kinematic conditions are imposed on the interface. A mixed Darcy formulation is employed, resulting in continuity of flux condition of essential type. A Lagrange multiplier method is employed to impose weakly this condition. A stability and error analysis is performed for the semi-discrete continuous-in-time and the fully discrete formulations. A series of numerical experiments is presented to confirm the theoretical convergence rates and to study the applicability of the method to modeling physical phenomena and the sensitivity of the model with respect to its parameters.
We develop a multipoint stress mixed finite element method for linear elasticity with weak stress symmetry on quadrilateral grids, which can be reduced to a symmetric and positive definite cell centered system. The method is developed on simplicial grids in [4]. The method utilizes the lowest order Brezzi-Douglas-Marini finite element spaces for the stress and the trapezoidal quadrature rule in order to localize the interaction of degrees of freedom, which allows for local stress elimination around each vertex. We develop two variants of the method. The first uses a piecewise constant rotation and results in a cell-centered system for displacement and rotation. The second uses a continuous piecewise bilinear rotation and trapezoidal quadrature rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in a cell-centered system for the displacement only. Stability and error analysis is performed for both methods. First-order convergence is established for all variables in their natural norms. A duality argument is employed to prove second order superconvergence of the displacement at the cell centers. Numerical results are presented in confirmation of the theory.
We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.