Evolutionary fitness landscapes of several antibiotic target proteins have been comprehensively mapped showing strong high-order epistasis between mutations, but understanding these effects at the biochemical and structural levels remained open. Here, we carried out an extensive experimental and computational study to quantitatively understand the evolutionary dynamics of
Escherichia coli
dihydrofolate reductase (DHFR) enzyme in the presence of trimethoprim-induced selection. To facilitate this, we developed a new in vitro assay for rapidly characterizing DHFR steady-state kinetics. Biochemical and structural characterization of resistance-conferring mutations targeting a total of ten residues spanning the substrate binding pocket of DHFR revealed distinct changes in the catalytic efficiencies of mutated DHFR enzymes. Next, we measured biochemical parameters (
K
m
,
K
i
, and
k
cat
) for a mutant library carrying all possible combinations of six resistance-conferring DHFR mutations and quantified epistatic interactions between them. We found that the high-order epistasis in catalytic power of DHFR (
k
cat
and
K
m
) creates a rugged fitness landscape under trimethoprim selection. Taken together, our data provide a concrete illustration of how epistatic coupling at the level of biochemical parameters can give rise to complex fitness landscapes, and suggest new strategies for developing mutant specific inhibitors.
The antibiotic trimethoprim (TMP) is used to treat a variety of Escherichia coli infections, but its efficacy is limited by the rapid emergence of TMP-resistant bacteria. Previous laboratory evolution experiments have identified resistance-conferring mutations in the gene encoding the TMP target, bacterial dihydrofolate reductase (DHFR), in particular mutation L28R. Here, we show that 4’-desmethyltrimethoprim (4’-DTMP) inhibits both DHFR and its L28R variant, and selects against the emergence of TMP-resistant bacteria that carry the L28R mutation in laboratory experiments. Furthermore, antibiotic-sensitive E. coli populations acquire antibiotic resistance at a substantially slower rate when grown in the presence of 4’-DTMP than in the presence of TMP. We find that 4’-DTMP impedes evolution of resistance by selecting against resistant genotypes with the L28R mutation and diverting genetic trajectories to other resistance-conferring DHFR mutations with catalytic deficiencies. Our results demonstrate how a detailed characterization of resistance-conferring mutations in a target enzyme can help identify potential drugs against antibiotic-resistant bacteria, which may ultimately increase long-term efficacy of antimicrobial therapies by modulating evolutionary trajectories that lead to resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.