Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.
Several microRNAs (miRNAs), including liver-specific miR-122, have been implicated in the control of hepatitis C virus (HCV) RNA replication and its response to interferon (IFN) in human hepatoma cells. Our analysis of liver biopsies from subjects with chronic hepatitis C (CHC) undergoing IFN therapy revealed no correlation of miR-122 expression with viral load and markedly decreased pretreatment miR-122 levels in subjects who had no virological response during later IFN therapy; other investigated miRNAs showed only limited changes. These data have implications for the prospect of targeting miRNAs for CHC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.