Development of nanotechnology leads to the increasing release of nanoparticles in the environment that results in accumulation of different NPs in living organisms including plants. This can lead to serious changes in plant cultures which leads to genotoxicity. The aims of the present study were to detect if iron oxide NPs pass through the flax cell wall, to compare callus morphology, and to estimate the genotoxicity in Linum usitatissimum L. callus cultures induced by different concentrations of Fe 3 O 4 nanoparticles. Two parallel experiments were performed: experiment A, where flax explants were grown on medium supplemented with 0.5 mg/l, 1 mg/l, and 1.5 mg/l Fe 3 O 4 NPs for callus culture obtaining, and experiment B, where calluses obtained from basal MS medium were transported into medium supplemented with concentrations of NPs identical to experiment A. Obtained results demonstrate similarly in both experiments that 25 nm Fe 3 O 4 NPs pass into callus cells and induce low toxicity level in the callus cultures. Nevertheless, calluses from experiment A showed 100% embryogenesis in comparison with experiment B where 100% rhizogenesis was noticed. It could be associated with different stress levels and adaptation time for explants and calluses that were transported into medium with Fe 3 O 4 NPs supplementation.
In the present study a new luminescent dye 3‐N‐(2‐pyrrolidinylacetamido)benzanthrone (AZR) was synthesized. Spectroscopic measurements of the novel benzanthrone 3‐aminoderivative were performed in seven organic solvents showing strong fluorescence. The capability of the prepared dye for visualization has been tested on flax, red clover and alfalfa to determinate the embryo in plant callus tissue cultures. Callus cells were stained with AZR and further analysed utilizing confocal laser scanning fluorescence microscopy. Performed experiments show high visualization effectiveness of newly synthesized fluorescent dye AZR that is efficient in fast and relatively inexpensive diagnostics of callus embryos that are problematic due to in vitro culture specificity.
Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68 ± 0.98; Pme3 2.07 ± 0.87) or silver nanoparticles (Mlo 12.01 ± 0.43; Pme3 10.04 ± 0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group.
The genotoxic effect of cadmium sulfide nanoparticles (CdS NPs) of different sizes in rucola (Eruca sativaMill.) plants was assessed. It was confirmed that nanoparticles < 5 nm in size were more toxic than larger particles at an identical mass concentration. Significant differences in cell ploidy, as well as in the mitotic index, were detected between control and treated samples. Differences in the DNA banding pattern between control samples and samples after treatment with cadmium sulfide nanoparticles were significant and detected at different places as the appearance or elimination of DNA fragments. Fluorescence images showed that cadmium sulfide nanoparticles smaller than 5 nm in size can diffuse through the membrane and their presence affects the genetic system of the plant.
Benzanthrone derivates are now widely used in many industrial and scientific applications as dyes for polymers and textiles. In biochemical, biomedical and diagnostics investigations benzanthrone dyes are used as a lipophilic fluorescent probe since many benzanthrone derivates demonstrate bright fluorescence and they have ability to intercalate between membrane lipids. The aim of research presented here was to assess the luminescence ability of benzanthrone derivatives using microscopic visualization of biological objects. Accordingly, specimens of freshwater trematodes: Diplostomum spathaceum, Diplodiscus subclavatus and Prosotocus confusus, were stained by novel benzanthrone dyes using different fixatives. The samples were examined under a confocal laser scanning microscope. All of the dyes tested demonstrated good results for digestive and reproductive system visualization. Based on obtained results we conclude that benzanthrone dyes could be used for internal and external structure confocal laser scanning microscopic imaging of trematode specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.