Activated microglia are found in a variety of neuroinflammatory disorders where they have attributed roles as effector as well as antigen-presenting cells (APC). Critical determinants for the multifaceted role of microglia are the differentiation potential of microglia and their mode of activation. In this study, we have investigated the effects of M-CSF and GM-CSF-mediated differentiation of adult primate microglia on their cellular phenotype, antigen presentation, and phagocytic function as well as on Toll-like receptor (TLR)-mediated responses. We show that although cell morphology and expression levels of activation markers were markedly different, differentiation with either factor yielded microglia that phenotypically and functionally resemble macrophages. Both M-CSF and GM-CSF-differentiated microglia were responsive to TLR1/2, 2, 3, 4, 5, 6/2, and 8-mediated activation, but not to TLR7 or 9-mediated activation. Intriguingly, M-CSF-differentiated microglia expressed higher levels of TLR8-encoding mRNA and protein, and produced larger amounts of proinflammatory cytokines in response to TLR8-mediated activation as compared to GM-CSF-differentiated microglia. While differentiation of adult microglia by growth factors that can be produced endogenously in the central nervous system is thus unlikely to change their APC function, it can alter their innate responses to infectious stimuli such as ssRNA viruses. Resident primate microglia may thereby help shape rather than initiate adaptive immune responses.
The complete nucleotide sequences of three chimpanzee polyomavirus genetic variants were determined. Phylogenetic analysis indicated that the viruses form two different genotypes of ChPyV. Comparison with other primate polyomaviruses revealed a putative agnogene, and an unusually long VP1 open reading frame. The transcriptional control regions (TCR) of the viruses were extremely short (155 nucleotides), and highly conserved amongst the genotypes. Analysis of the TCR from different chimpanzee subspecies, and from a series of tissues from five individuals confirmed its genetic stability, and also indicates that double-infections with different genotypes can occur.
Infection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have described the development of HIV-1 resistance to NRTIs and identified mutations in the polymerase domain of RT. Recent studies have shown that mutations in the connection and RNase H domains of HIV-1 RT may also contribute to resistance. However, only limited information exists regarding the resistance of HIV-2 to NRTIs. In this study, therefore, we analyzed the polymerase, connection, and RNase H domains of RT in HIV-2 patients failing NRTI-containing therapies. Besides the key resistance mutations K65R, Q151M, and M184V, we identified a novel mutation, V111I, in the polymerase domain. This mutation was significantly associated with mutations K65R and Q151M. Sequencing of the connection and RNase H domains of the HIV-2 patients did not reveal any of the mutations that were reported to contribute to NRTI resistance in HIV-1. We show that V111I does not strongly affect drug susceptibility but increases the replication capacity of the K65R and Q151M viruses. Biochemical assays demonstrate that V111I restores the polymerization defects of the K65R and Q151M viruses but negatively affects the fidelity of the HIV-2 RT enzyme. Molecular dynamics simulations were performed to analyze the structural changes mediated by V111I. This showed that V111I changed the flexibility of the 110-to-115 loop region, which may affect deoxynucleoside triphosphate (dNTP) binding and polymerase activity. IMPORTANCEMutation V111I in the HIV-2 reverse transcriptase enzyme was identified in patients failing therapies containing nucleoside analogues. We show that the V111I change does not strongly affect the sensitivity of HIV-2 to nucleoside analogues but increases the fitness of viruses with drug resistance mutations K65R and Q151M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.