BackgroundHookworms are important pathogens of humans. To date, Necator americanus is the sole, known species of the genus Necator infecting humans. In contrast, several Necator species have been described in African great apes and other primates. It has not yet been determined whether primate-originating Necator species are also parasitic in humans.Methodology/Principal FindingsThe infective larvae of Necator spp. were developed using modified Harada-Mori filter-paper cultures from faeces of humans and great apes inhabiting Dzanga-Sangha Protected Areas, Central African Republic. The first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA and partial cytochrome c oxidase subunit 1 (cox1) gene of mtDNA obtained from the hookworm larvae were sequenced and compared. Three sequence types (I–III) were recognized in the ITS region, and 34 cox1 haplotypes represented three phylogenetic groups (A–C). The combinations determined were I-A, II-B, II-C, III-B and III-C. Combination I-A, corresponding to N. americanus, was demonstrated in humans and western lowland gorillas; II-B and II-C were observed in humans, western lowland gorillas and chimpanzees; III-B and III-C were found only in humans. Pairwise nucleotide difference in the cox1 haplotypes between the groups was more than 8%, while the difference within each group was less than 2.1%.Conclusions/SignificanceThe distinctness of ITS sequence variants and high number of pairwise nucleotide differences among cox1 variants indicate the possible presence of several species of Necator in both humans and great apes. We conclude that Necator hookworms are shared by humans and great apes co-habiting the same tropical forest ecosystems.
Intestinal entodiniomorphid ciliates are commonly diagnosed in the feces of wild apes of the genera Pan and Gorilla. Although some authors previously considered entodiniomorphid ciliates as possible pathogens, a symbiotic function within the intestinal ecosystem and their participation in fiber fermentation has been proposed. Previous studies have suggested that these ciliates gradually disappear under captive conditions. We studied entodiniomorphid ciliates in 23 captive groups of chimpanzees, three groups of captive bonobos and six populations of wild chimpanzees. Fecal samples were examined using Sheather's flotation and Merthiolate-Iodine-Formaldehyde Concentration (MIFC) methods. We quantified the number of ciliates per gram of feces. The MIFC method was more sensitive for ciliate detection than the flotation method. Ciliates of genus Troglodytella were detected in 13 groups of captive chimpanzees, two groups of bonobos and in all wild chimpanzee populations studied. The absence of entodiniomorphids in some captive groups might be because of the extensive administration of chemotherapeutics in the past or a side-effect of the causative or prophylactic administration of antiparasitic or antibiotic drugs. The infection intensities of ciliates in captive chimpanzees were higher than in wild ones. We suppose that the over-supply of starch, typical in captive primate diets, might induce an increase in the number of ciliates. In vitro studies on metabolism and biochemical activities of entodiniomorphids are needed to clarify their role in ape digestion.
Balantidium coli is a ciliate reported in many mammalian species, including African great apes. In the former, asymptomatic infections as well as clinical balantidiasis have been reported in captivity. We carried out a cross-sectional study of B. coli in African great apes (chimpanzees, bonobos, and both species of gorillas) and examined 1,161 fecal samples from 28 captive facilities in Europe, plus 2 sanctuaries and 11 wild sites in Africa. Samples were analyzed with the use of Sheather's flotation and merthiolate-iodine-formaldehyde (MIFC) sedimentation. MIFC sedimentation was the more sensitive technique for diagnostics of B. coli in apes. Although not detected in any wild-ape populations, B. coli was diagnosed in 52.6% of captive individuals. Surprisingly, in the apes' feces, trophozoites of B. coli were commonly detected, in contrast with other animals, e.g., Old World monkeys, pigs, etc. Most likely reservoirs for B. coli in captive apes include synantropic rats. High starch diets in captive apes are likely to exacerbate the occurrence of balantidiasis in captive apes.
We examined fiber fermentation capacity of captive chimpanzee fecal microflora from animals (n = 2) eating low-fiber diets (LFDs; 14% neutral detergent fiber (NDF) and 5% of cellulose) and high-fiber diets (HFDs; 26% NDF and 15% of cellulose), using barley grain, meadow hay, wheat straw, and amorphous cellulose as substrates for in vitro gas production of feces. We also examined the effects of LFD or HFD on populations of eubacteria and archaea in chimpanzee feces. Fecal inoculum fermentation from the LFD animals resulted in a higher in vitro dry matter digestibility (IVDMD) and gas production than from the HFD animals. However, there was an interaction between different inocula and substrates on IVDMD, gas and methane production, and hydrogen recovery (P <0.001). On the other hand, HFD inoculum increased the production of total short-chain fatty acids (SCFAs), acetate, and propionate with all tested substrates. The effect of the interaction between the inoculum and substrate on total SCFAs was not observed. Changes in fermentation activities were associated with changes in bacterial populations. DGGE of bacterial DNA revealed shift in population of both archaeal and eubacterial communities. However, a much more complex eubacterial population structure represented by many bands was observed compared with the less variable archaeal population in both diets. Some archaeal bands were related to the uncultured archaea from gastrointestinal tracts of homeothermic animals. Genomic DNA in the dominant eubacterial band in the HFD inoculum was confirmed to be closely related to DNA from Eubacterium biforme. Interestingly, the predominant band in the LFD inoculum represented DNA of probably new or yet-to-be-sequenced species belonging to mycoplasms. Collectively, our results indicated that fecal microbial populations of the captive chimpanzees are not capable of extensive fiber fermentation; however, there was a positive effect of fiber content on SCFA production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.