Procedures for risk assessment of chemical mixtures, combined and cumulative exposures are under development, but the scientific database needs considerable expansion. In particular, there is a lack of knowledge on how to monitor effects of complex exposures, and there are few reviews on biomonitoring complex exposures. In this review we summarize articles in which biomonitoring techniques have been developed and used. Most examples describe techniques for biomonitoring effects which may detect early changes induced by many chemical stressors and which have the potential to accelerate data gathering. Some emphasis is put on endocrine disrupters acting via epigenetic mechanisms and on carcinogens. Solid evidence shows that these groups of chemicals can interact and even produce synergistic effects. They may act during sensitive time windows and biomonitoring their effects in epidemiological studies is a challenging task.
MotivationTo understand the molecular mechanisms involved in cancer development, significant efforts are being invested in cancer research. This has resulted in millions of scientific articles. An efficient and thorough review of the existing literature is crucially important to drive new research. This time-demanding task can be supported by emerging computational approaches based on text mining which offer a great opportunity to organize and retrieve the desired information efficiently from sizable databases. One way to organize existing knowledge on cancer is to utilize the widely accepted framework of the Hallmarks of Cancer. These hallmarks refer to the alterations in cell behaviour that characterize the cancer cell.ResultsWe created an extensive Hallmarks of Cancer taxonomy and developed automatic text mining methodology and a tool (CHAT) capable of retrieving and organizing millions of cancer-related references from PubMed into the taxonomy. The efficiency and accuracy of the tool was evaluated intrinsically as well as extrinsically by case studies. The correlations identified by the tool show that it offers a great potential to organize and correctly classify cancer-related literature. Furthermore, the tool can be useful, for example, in identifying hallmarks associated with extrinsic factors, biomarkers and therapeutics targets.Availability and implementationCHAT can be accessed at: http://chat.lionproject.net. The corpus of hallmark-annotated PubMed abstracts and the software are available at: http://chat.lionproject.net/aboutSupplementary information Supplementary data are available at Bioinformatics online.
Research in biomedical text mining is starting to produce technology which can make information in biomedical literature more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB – a fully integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming, requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research. Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We discuss further development and application of our technology to other types of chemical risk assessment in the future.
BackgroundOne of the most neglected areas of biomedical Text Mining (TM) is the development of systems based on carefully assessed user needs. We have recently investigated the user needs of an important task yet to be tackled by TM -- Cancer Risk Assessment (CRA). Here we take the first step towards the development of TM technology for the task: identifying and organizing the scientific evidence required for CRA in a taxonomy which is capable of supporting extensive data gathering from biomedical literature.ResultsThe taxonomy is based on expert annotation of 1297 abstracts downloaded from relevant PubMed journals. It classifies 1742 unique keywords found in the corpus to 48 classes which specify core evidence required for CRA. We report promising results with inter-annotator agreement tests and automatic classification of PubMed abstracts to taxonomy classes. A simple user test is also reported in a near real-world CRA scenario which demonstrates along with other evaluation that the resources we have built are well-defined, accurate, and applicable in practice.ConclusionWe present our annotation guidelines and a tool which we have designed for expert annotation of PubMed abstracts. A corpus annotated for keywords and document relevance is also presented, along with the taxonomy which organizes the keywords into classes defining core evidence for CRA. As demonstrated by the evaluation, the materials we have constructed provide a good basis for classification of CRA literature along multiple dimensions. They can support current manual CRA as well as facilitate the development of an approach based on TM. We discuss extending the taxonomy further via manual and machine learning approaches and the subsequent steps required to develop TM technology for the needs of CRA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.