Phytochrome A (phyA) plays an important role during germination and early seedling development. Because phyA is the primary photoreceptor for the high-irradiance response and the very-lowfluence response, it can trigger development not only in red and far-red (FR) light but also in a wider range of light qualities. Although phyA action is generally associated with translocation to the nucleus and regulation of transcription, there is evidence for additional cytoplasmic functions. Because nuclear accumulation of phyA has been shown to depend on far-red-elongated hypocotyl 1 (FHY1) and FHL (FHY1-like), investigation of phyA function in a double fhl/fhy1 mutant might be valuable in revealing the mechanism of phyA translocation and possible cytoplasmic functions. In fhl/fhy1, the FR-triggered nuclear translocation of phyA could no longer be detected but could be restored by transgenic expression of CFP:FHY1. Whereas the fhl/fhy1 mutant showed a phyA phenotype in respect to hypocotyl elongation and cotyledon opening under high-irradiance response conditions as well as a typical phyA germination phenotype under very-low-fluence response conditions, fhl/fhy1 showed no phenotype with respect to the phyAdependent abrogation of negative gravitropism in blue light and in red-enhanced phototropism, demonstrating clear cytoplasmic functions of phyA. Disturbance of phyA nuclear import in fhl/fhy1 led to formation of FR-induced phyA:GFP cytoplasmic foci resembling the sequestered areas of phytochrome. FHY1 and FHL play crucial roles in phyA nuclear translocation and signaling. Thus the double-mutant fhl/fhy1 allows nuclear and cytoplasmic phyA functions to be separated, leading to the novel identification of cytoplasmic phyA responses.cytoplasmic signaling ͉ far-red-elongated hypocotyl 1 ͉ localization
Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo‐ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K‐Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABAA‐receptor Cl− channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl−]i roughly two‐fold. The reduced Cl− gradient nearly abolished GABA‐induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long‐term phase learning of the vestibulo‐ocular reflex, whereas baseline performance, short‐term gain‐decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning.
The collagen matrix is an effective and safe cranial and spinal dural substitute that can be used even in cases of an existing local infection. Postoperative deep infection increases the risk for CSF leakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.