This work aimed to study the automation of measuring the speed of punches of boxers during shadow boxing using inertial measurement units (IMUs) based on an artificial neural network (ANN). In boxing, for the effective development of an athlete, constant control of the punch speed is required. However, even when using modern means of measuring kinematic parameters, it is necessary to record the circumstances under which the punch was performed: The type of punch (jab, cross, hook, or uppercut) and the type of activity (shadow boxing, single punch, or series of punches). Therefore, to eliminate errors and accelerate the process, that is, automate measurements, the use of an ANN in the form of a multilayer perceptron (MLP) is proposed. During the experiments, IMUs were installed on the boxers’ wrists. The input parameters of the ANN were the absolute acceleration and angular velocity. The experiment was conducted for three groups of boxers with different levels of training. The developed model showed a high level of punch recognition for all groups, and it can be concluded that the use of the ANN significantly accelerates the collection of data on the kinetic characteristics of boxers’ punches and allows this process to be automated.
Despite the great possibilities of modern neural network architectures concerning the problems of object detection and recognition, the output of such models is the local (pixel) coordinates of objects bounding boxes in the image and their predicted classes. However, in several practical tasks, it is necessary to obtain more complete information about the object from the image. In particular, for robotic apple picking, it is necessary to clearly understand where and how much to move the grabber. To determine the real position of the apple relative to the source of image registration, it is proposed to use the Intel Real Sense depth camera and aggregate information from its depth and brightness channels. The apples detection is carried out using the YOLOv3 architecture; then, based on the distance to the object and its localization in the image, the relative distances are calculated for all coordinates. In this case, to determine the coordinates of apples, a transition to a symmetric coordinate system takes place by means of simple linear transformations. Estimating the position in a symmetric coordinate system allows estimating not only the magnitude of the shift but also the location of the object relative to the camera. The proposed approach makes it possible to obtain position estimates with high accuracy. The approximate root mean square error is 7–12 mm, depending on the range and axis. As for precision and recall metrics, the first is 100% and the second is 90%.
Coaches and athletes need to understand the kinematics and dynamics of karate kicks to improve the training process and results. The research was aimed at studying the automatic recognition of punches in karate using only linear acceleration sensors. Accelerometers were part of the Inertial Measurement Units (IMUs), which were attached to the left and right wrist of the athlete. To develop a model of punches, highly qualified athletes with 3-7 years of karate experience participated in the research. We analyzed the acceleration fields of various karate punches: Yun Tsuki, Mawashi Tsuki, Age of Tsuki, Uraken. A simpler approach to extracting features without calculating their statistical characteristics is proposed. To solve the classification problem, various architectures of convolutional neural networks are used: multilayer perceptron, 1-and 2-dimension Convolution Networks. Since the recognition of punches was carried out in the conditions of a shadow fight, in addition to the recognition of punches, another output parameter was introducedmovement without punches. Studies have shown a high level of punch recognition based on the developed models. The multi-class accuracy value is 0.96, and the average F1 value is 0.97 for five different punch classes. Thus, the proposed approach is more suitable for practical implementation in automatic learning systems.
An integrated information and measurement system is presented, including a personal computer, special software, a set of sensors, and an ADC-DAC. Some possibilities of using modern information technologies in the workshop on robotics and electronics are shown. Several experiments were carried out using a traditional installation and a modified one using modern information technologies
A method of automated control of human temperature in public places is proposed, which allows determining people with elevated temperature immediately at the control point. To develop the technique, an experimental stand was designed and implemented in a rack with six built-in infrared sensors. To recognize a person with an elevated temperature, an artificial neural network was used in the form of a multilayer perceptron, at the input of which there were IR sensor data. The conducted experiments showed that the trained model based on the F1-metric efficiency of 0.89 to 0.94 determines a person with an elevated temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.