We report herein the fabrication of a molecular junction in which a thin (8−15 Å) layer of oriented organic molecules is positioned between two electronic conductors. The molecular layer becomes a component in an electronic circuit and exhibits properties that depend strongly on molecular structure. Bonding between the carbon substrate and the molecular layer is covalent and conjugated, and thus differs fundamentally from that of the widely studied self-assembled monolayers of alkane thiols on metal surfaces. The chemisorbed molecular layer is densely packed and stable and does not contain the tunneling barrier imposed by a sulfur atom. The current/voltage behavior of methyl-phenyl, n-butyl phenyl, tert-butyl phenyl, and stilbene monolayers between pyrolytic carbon and mercury indicates a negligible pinhole density and shows weak dependence on temperature. The action of a nitroazobenzene molecular junction as a bistable switch is demonstrated, and switching behavior persisted for many on−off cycles and over a period of at least 14 h. Carbon-based molecular junctions represent a new paradigm for molecular electronics, which shows promising electronic behavior and is amenable to low cost, benchtop processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.