This paper presents new methods for estimating the axle weight of a moving vehicle, using two piezoelectric sensors and adaptive-footprint tire model. It is more difficult to weigh vehicles in motion accurately than to weigh standing vehicles. The difficulties in weighing moving vehicles result from sensor limitations as well as dynamic loading effects induced by vehicle/pavement interactions. For example, two identical vehicles with the same weight will generate sensor signals that differ in the shape and the peak value, depending the tire pressure, vehicle speed, road roughness, and sensor characteristics. This paper develops a method that is much less sensitive to these variable factors in determining the axle weight of a moving vehicle. In the developed method, first the piezoelectric sensor signal is reconstructed using the inverse dynamics of a high-pass filter representing the piezoelectric sensor. Then, the reconstructed signal, is normalized, using the nominal road/tire contact length obtained using an adaptive-footprint tire model, and then integrated. Experiments are performed with 3 vehicles of known weight ranging from 1,400 kg to 28,040 kg. The developed method is compared to two other algorithms. Results show that the developed method is most consistent and accurate.
Conventionally a phase-shift detection method (PSDM) and a frequency-shift detection method (FSDM) have been used in loop detectors. The PSDM has a fast response time and is very effective in detecting vehicles traveling at normal speeds. However, it is well known that the detection results are erroneous for vehicles traveling at low speeds in heavy traf®c conditions. On the other hand, the FSDM greatly improves the detector performance for heavy traf®c conditions. However, this method is not effective in fast and normal traf®c conditions. Thus, in order to collect accurate traf®c data for all traf®c conditions, this paper proposes combining two methods using the digital OR logic. In the developed circuit, a phase-locked loop (PLL) circuit is used for measuring the phase change. This paper also develops a new loop detector instrumentation method using the so-called M circuit for detecting frequency change. The developed method has been tested for various traf®c conditions. Experimental results show that the new combined M and PLL detection method greatly improves the accuracy in all traf®c conditions, reducing the error rate in measuring traf®c¯ow by more than 83%, when compared to the PSDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.