The myostatin (MSTN) gene region encompassing the 5'UTR and part of intron I was sequenced in animals of two herds of Latvian Darkhead sheep to extend data on the ovine MSTN gene polymorphism and to provide information useful for local breed conservation. Two and four polymorphic loci were revealed in the 5'UTR and intron I. Four and five local haplotypes were constructed, respectively. The genotyping data obtained and that previously reported for the same genomic region were combined in one dataset for the haplotype analysis. Recombination events were detected between loci (c.-40, c.-37) in the 5'UTR and (c.373+18, c.373+101) and (c.373+101, c.373+241) in intron I. Single-nucleotide polymorphisms at c.373+249 and c.373+323 appear to be involved in the strong linkage (p < 0.01). Linkage blocks (c.373+241, c.373+243) and (c.373+241, c.373+259) were revealed at nominal (p < 0.05) level of probability. Haplotype-specific patterns of the transcription factor binding sites predicted in silico were constructed to evaluate a putative functional significance of the particular alleles and haplotypes. A nucleotide at c.373+18 was shown to influence the pre-mRNA secondary structure. DNA curvature predicted in silico for allele c.373+101C was proven experimentally. A possible impact of the particular polymorphisms on the transcription and/or splicing efficiency is discussed.
We demonstrate for the first time evidence of a sex-specific association of PSMA6/PSMC6/PSMA3 genetic variants with subtypes of JIA and plasma proteasome concentrations. Theoretical models of the functional significance of allele substitutions are discussed.
The aim of this study was to ascertain possible associations between childhood obesity, its anthropometric and clinical parameters, and three loci of proteasomal genes rs2277460 (PSMA6 c.-110C>A), rs1048990 (PSMA6 c.-8C>G), and rs2348071 (PSMA3 c. 543+138G>A) implicated in obesity-related diseases. Obese subjects included 94 otherwise healthy children in Latvia. Loci were genotyped and then analyzed using polymerase chain reactions, with results compared to those of 191 nonobese controls. PSMA3 SNP frequency differences between obese children and controls, while not reaching significance, suggested a trend. These differences, however, proved highly significant (P < 0.002) in the subset of children reporting a family history of obesity. Among obese children denying such history, PSMA6 c.-8C>G SNP differences, while being nonsignificant, likewise suggested a trend in comparison to the nonobese controls. No PSMA6 c.-110C>A SNP differences were detected in the obese group or its subsets. Finally, PSMA3 SNP differences were significantly associated (P < 0.05) with circulating low-density lipoprotein cholesterol (LDL) levels. Our results clearly implicate the PSMA3 gene locus as an obesity risk factor in those Latvian children with a family history of obesity. While being speculative, the clinical results are suggestive of altered circulatory LDL levels playing a possible role in the etiology of obesity in the young.
In diabetes mellitus (DM), both hyperglycaemia and hyperlipidaemia can initiate accumulation of fat in the liver, which might be further mediated by inducible nitric oxide synthase. We have studied changes in GLUT1, nitric oxide (NO(·)) concentration and liver damage in two rat DM models. STZ model was induced by strepozotocin 50 mg/kg. HS model was induced by high-fat diet and 30 mg/kg streptozotocin. GLUT1 expression was studied by means of real-time RT-PCR and immunohistochemistry. Production of NO(·) was monitored by means of erythrocyte sedimentation rate spectroscopy of Fe-DETC-NO complex. Liver damage was assessed using histological activity index (HAI). NO(·) concentration was increased in the liver of STZ rats, but it did not change in HS rats (control 36.8 ± 10.3; STZ 142.1 ± 31.1; HS 35.4 ± 9.8 ng/g). Liver HAI was higher in STZ group, 8.6 ± 0.17 versus HS 4.7 ± 0.31, p < 0.05. GLUT1 protein expression was elevated only in STZ group, 16 ± 3 cells/mm(2) versus Control 5 ± 2 cells/mm(2), p = 0.007. Hyperglycaemia sooner causes severe liver damage in rat models of DM, compared with hyperlipidaemia, and is associated with increased NO(·) production. GLUT1 transporter expression might be involved in toxic effects of glucose in the liver. We have obtained novel data about association of GLUT1 expression and NO(·) metabolism in the pathogenesis of liver injury in DM. Increased GLUT1 expression was observed together with overproduction of NO(·) and pronounced liver injury in severely hyperglycaemic rats. On the contrary, moderately hyperglycaemic hyperlipidaemic rats developed only moderate liver steatosis and no increase in GLUT1 and NO(·). GLUT1 overexpression might be implicated in the toxic effects of glucose in the liver. Glycotoxicity is associated with oxidative stress and NO(·) hyperproduction. GLUT1 and NO(·) metabolism might become novel therapeutic targets in liver steatosis.
To identify novel juvenile idiopathic arthritis (JIA) susceptibility loci, a 270 kb genomic region encompassing FAM177A1, KIAA0391, and PSMA6 genes was genotyped in 97 oligoarthritis (JIoA) and 50 polyarthritis (JIpA) patients and 230 individuals without autoimmune disorders by five microsatellites (MS) previously described as HSMS markers of the 14q13.2 region. Direct sequencing revealed two variable components of the (CAA)(n)(A)(m) motif in HSMS602 marker (FAM177A1 gene). Repeat (AC)(5)AT(AC)(n) of the HSMS701 (KIAA0391 gene) was variable in the Latvian population only in its downstream part. Allele (AC)(5)AT(AC)(15) of HSMS701 was found to be strongly associated with JIA (p = 4.91 x 10(-5), odds ratio [OR] = 18.87) and modestly associated with JIpA (p = 1.64 x 10(-3), OR = 15.69). Alleles (AC)(5)AT(AC)(18) of HSMS701 and (TG)(10) of HSMS702 appear to be JIA and JIoA risk factors (p = 1.09 x 10(-3), OR = 2.64 and p = 2.00 x 10(-3), OR = 7.67, respectively), but allele 168 bp of HSMS602 (p = 9.02 x 10(-4), OR = 0.35) appears to be protective. Two heterozygote genotypes (TG)(20/23) of the HSMS006 and (AC)(22/23) of the HSMS801 showed association with JIA (p < 2 x 10(-3)), but homozygote (TG)(19/19) was found to be protective (p = 5.41 x 10(-4), OR = 0.12). Our results define an additional susceptibility locus for JIA at the 14q13.2 genomic region encompassing KIAA0391 and PSMA6 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.