We introduce a novel parametrization of the correlation matrix. The reparametrization facilitates modeling of correlation and covariance matrices by an unrestricted vector, where positive definiteness is an innate property. This parametrization can be viewed as a generalization of Fisher's
Z‐transformation to higher dimensions and has a wide range of potential applications. An algorithm for reconstructing the unique
n ×
n correlation matrix from any vector in
R
n
(
n
−
1
)
/
2
is provided, and we derive its numerical complexity.
We introduce a multivariate estimator of financial volatility that is based on the theory of Markov chains. The Markov chain framework takes advantage of the discreteness of high-frequency returns. We study the finite sample properties of the estimation in a simulation study and apply it to highfrequency commodity prices.
We obtain a canonical representation for block matrices. The representation facilitates simple computation of the determinant, the matrix inverse, and other powers of a block matrix, as well as the matrix logarithm and the matrix exponential. These results are particularly useful for block covariance and block correlation matrices, where evaluation of the Gaussian log-likelihood and estimation are greatly simplified. We illustrate this with an empirical application using a large panel of daily asset returns. Moreover, the representation paves new ways to regularizing large covariance/correlation matrices and to test block structures in matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.