gamma-Secretase cleaves the transmembrane domain of the amyloid precursor protein, a process implicated in the pathogenesis of Alzheimer's disease, and this enzyme is a founding member of an emerging class of intramembrane proteases. Modeling and mutagenesis suggest a helical conformation for the substrate transmembrane domain upon initial interaction with the protease. Moreover, biochemical evidence supports the presence of an initial docking site for substrate on gamma-secretase that is distinct from the active site, a property predicted to be generally true of intramembrane proteases. Here we show that short peptides designed to adopt a helical conformation in solution are inhibitors of gamma-secretase in both cells and enzyme preparations. Helical peptides with all d-amino acids are the most potent inhibitors and represent potential therapeutic leads. Subtle modifications that disrupt helicity also substantially reduce potency, suggesting that this conformation is critical for effective inhibition. Fluorescence lifetime imaging in intact cells demonstrates that helical peptides disrupt binding between substrate and protease, whereas an active site-directed inhibitor does not. These findings are consistent with helical peptides interacting with the initial substrate docking site of gamma-secretase, suggesting a general strategy for the development of potent and specific inhibitors of intramembrane proteases.
Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRPmediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity.
Immunization against amyloid-beta has been suggested as a possible preventive or therapeutic treatment for Alzheimer's disease. We hypothesized that some individuals may have autoantibodies to amyloid-beta and that this may be protective. We analyzed the plasma of 365 individuals, drawn from a larger longitudinal epidemiological study, for the presence of antibodies to amyloid-beta. There were detectable but very low levels of anti-amyloid-beta antibodies in just over 50% of all samples and modest levels in under 5% of all samples. However, neither the presence nor the level of anti-amyloid-beta antibodies correlated with the likelihood of developing dementia or with plasma levels of amyloid-beta peptide. These data suggest that low levels of anti-amyloid-beta autoantibodies are frequent in the elderly population but do not confer protection against developing dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.