High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.
Imaging mass spectrometry (imaging MS) has emerged in the past decade as a label-free, spatially resolved, and multipurpose bioanalytical technique for direct analysis of biological samples from animal tissue, plant tissue, biofilms, and polymer films. Imaging MS has been successfully incorporated into many biomedical pipelines where it is usually applied in the so-called untargeted mode-capturing spatial localization of a multitude of ions from a wide mass range.3 An imaging MS data set usually comprises thousands of spectra and tens to hundreds of thousands of mass-to-charge (m/z) images and can be as large as several gigabytes. Unsupervised analysis of an imaging MS data set aims at finding hidden structures in the data with no a priori information used and is often exploited as the first step of imaging MS data analysis. We propose a novel, easy-to-use and easy-to-implement approach to answer one of the key questions of unsupervised analysis of imaging MS data: what do all m/z images look like? The key idea of the approach is to cluster all m/z images according to their spatial similarity so that each cluster contains spatially similar m/z images. We propose a visualization of both spatial and spectral information obtained using clustering that provides an easy way to understand what all m/z images look like. We evaluated the proposed approach on matrix-assisted laser desorption ionization imaging MS data sets of a rat brain coronal section and human larynx carcinoma and discussed several scenarios of data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.